Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Departamento de Materiales, Universidad Nacional de Colombia, Medellin 050034, Colombia.
Sci Adv. 2016 Aug 10;2(8):e1600978. doi: 10.1126/sciadv.1600978. eCollection 2016 Aug.
Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy.
液晶(LC)材料,如肌动蛋白或微管网络,已知能够改变细胞的形状。在这里,我们在一个合成系统中再现了这种行为的一些特征,即悬浮在 LC 中的一个巨大囊泡,我们将其视为制备具有活性、各向异性的混合系统的第一步,该系统模拟了生物系统中遇到的一些功能。为此,我们依赖于各向异性 LC 中可变形网络的耦合粒子连续体表示,该表示基于朗道-德让内斯自由能泛函。我们的结果表明,根据其弹性特性,LC 确实能够变形囊泡,直到达到平衡、各向异性的形状。变形的幅度由弹性和表面力之间的平衡决定。对于囊泡的垂直锚定,在赤道平面上形成一个土星环缺陷,并且囊泡采用盘状、扁球形。对于囊泡的退化平面锚定,在囊泡的两极形成两个 boojum 缺陷,囊泡采用拉长的、球形形状。在变形过程中,随着囊泡曲率的增加,LC 中的拓扑缺陷的体积大大缩小。这些预测得到了我们用具有平面锚定的大单层囊泡进行实验观察到的纺锤状形状的实验结果的证实。我们发现囊泡的张力抑制了囊泡的变形,而锚定强度和大弹性常数促进了形状各向异性。