McIntyre Roger S, Cha Danielle S, Jerrell Jeanette M, Swardfager Walter, Kim Rachael D, Costa Leonardo G, Baskaran Anusha, Soczynska Joanna K, Woldeyohannes Hanna O, Mansur Rodrigo B, Brietzke Elisa, Powell Alissa M, Gallaugher Ashley, Kudlow Paul, Kaidanovich-Beilin Oksana, Alsuwaidan Mohammad
Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
Bipolar Disord. 2014 Aug;16(5):531-47. doi: 10.1111/bdi.12162. Epub 2013 Dec 16.
To provide a strategic framework for the prevention of bipolar disorder (BD) that incorporates a 'Big Data' approach to risk assessment for BD.
Computerized databases (e.g., Pubmed, PsychInfo, and MedlinePlus) were used to access English-language articles published between 1966 and 2012 with the search terms bipolar disorder, prodrome, 'Big Data', and biomarkers cross-referenced with genomics/genetics, transcriptomics, proteomics, metabolomics, inflammation, oxidative stress, neurotrophic factors, cytokines, cognition, neurocognition, and neuroimaging. Papers were selected from the initial search if the primary outcome(s) of interest was (were) categorized in any of the following domains: (i) 'omics' (e.g., genomics), (ii) molecular, (iii) neuroimaging, and (iv) neurocognitive.
The current strategic approach to identifying individuals at risk for BD, with an emphasis on phenotypic information and family history, has insufficient predictive validity and is clinically inadequate. The heterogeneous clinical presentation of BD, as well as its pathoetiological complexity, suggests that it is unlikely that a single biomarker (or an exclusive biomarker approach) will sufficiently augment currently inadequate phenotypic-centric prediction models. We propose a 'Big Data'- bioinformatics approach that integrates vast and complex phenotypic, anamnestic, behavioral, family, and personal 'omics' profiling. Bioinformatic processing approaches, utilizing cloud- and grid-enabled computing, are now capable of analyzing data on the order of tera-, peta-, and exabytes, providing hitherto unheard of opportunities to fundamentally revolutionize how psychiatric disorders are predicted, prevented, and treated. High-throughput networks dedicated to research on, and the treatment of, BD, integrating both adult and younger populations, will be essential to sufficiently enroll adequate samples of individuals across the neurodevelopmental trajectory in studies to enable the characterization and prevention of this heterogeneous disorder.
Advances in bioinformatics using a 'Big Data' approach provide an opportunity for novel insights regarding the pathoetiology of BD. The coordinated integration of research centers, inclusive of mixed-age populations, is a promising strategic direction for advancing this line of neuropsychiatric research.
提供一个预防双相情感障碍(BD)的战略框架,该框架纳入一种用于BD风险评估的“大数据”方法。
利用计算机化数据库(如PubMed、PsychInfo和MedlinePlus)检索1966年至2012年间发表的英文文章,检索词为双相情感障碍、前驱症状、“大数据”以及与基因组学/遗传学、转录组学、蛋白质组学、代谢组学、炎症、氧化应激、神经营养因子、细胞因子、认知、神经认知和神经影像学交叉引用的生物标志物。如果感兴趣的主要结果被归类于以下任何一个领域,则从初始搜索中选择论文:(i)“组学”(如基因组学),(ii)分子,(iii)神经影像学,以及(iv)神经认知。
当前识别BD风险个体的战略方法,侧重于表型信息和家族史,其预测效度不足且在临床上存在缺陷。BD的异质性临床表现及其病理病因复杂性表明,单一生物标志物(或排他性生物标志物方法)不太可能充分增强目前以表型为中心且存在不足的预测模型(效能)。我们提出一种“大数据”——生物信息学方法,该方法整合海量且复杂的表型、记忆、行为、家族和个人“组学”剖析。利用云计算和网格计算的生物信息处理方法,现在能够分析万亿字节、千万亿字节和百亿亿字节量级的数据,为从根本上变革精神疾病的预测、预防和治疗方式提供了前所未有的机遇。致力于BD研究和治疗的高通量网络,整合成人和年轻人群体,对于在研究中充分纳入处于神经发育轨迹上足够数量的个体样本至关重要,以便能够对这种异质性疾病进行特征描述和预防。
使用“大数据”方法的生物信息学进展为有关BD病理病因的新见解提供了机会。包括不同年龄人群的研究中心的协调整合,是推进这一神经精神疾病研究领域的一个有前景的战略方向。