Volkenandt Tobias, Müller Erich, Gerthsen Dagmar
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe, Germany.
Microsc Microanal. 2014 Feb;20(1):111-23. doi: 10.1017/S1431927613013913. Epub 2013 Dec 13.
Sample thickness is a decisive parameter for any quantification of image information and composition in transmission electron microscopy. In this context, we present a method to determine the local sample thickness by scanning transmission electron microscopy at primary energies below 30 keV. The image intensity is measured with respect to the intensity of the incident electron beam and can be directly compared with Monte Carlo simulations. Screened Rutherford and Mott scattering cross-sections are evaluated with respect to fitting experimental data with simulated image intensities as a function of the atomic number of the sample material and primary electron energy. The presented method is tested for sample materials covering a wide range of atomic numbers Z, that is, fluorenyl hexa-peri-hexabenzocoronene (Z = 3.5), carbon (Z = 6), silicon (Z = 14), gallium nitride (Z = 19), and tungsten (Z = 74). Investigations were conducted for two primary energies (15 and 30 keV) and a sample thickness range between 50 and 400 nm.
在透射电子显微镜中,样品厚度是对图像信息和成分进行任何量化的决定性参数。在此背景下,我们提出一种在低于30 keV的一次能量下通过扫描透射电子显微镜确定局部样品厚度的方法。图像强度是相对于入射电子束的强度进行测量的,并且可以直接与蒙特卡罗模拟进行比较。针对用模拟图像强度作为样品材料原子序数和一次电子能量的函数来拟合实验数据,评估了屏蔽卢瑟福散射截面和莫特散射截面。所提出的方法针对涵盖广泛原子序数Z的样品材料进行了测试,即芴基六并六苯并蔻(Z = 3.5)、碳(Z = 6)、硅(Z = 14)、氮化镓(Z = 19)和钨(Z = 74)。针对两种一次能量(15 keV和30 keV)以及50至400 nm的样品厚度范围进行了研究。