Brinks Ralph, Landwehr Sandra
Institute for Biometry and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Duesseldorf, Germany.
Institute for Biometry and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Duesseldorf, Germany.
Theor Popul Biol. 2014 Mar;92:62-8. doi: 10.1016/j.tpb.2013.11.006. Epub 2013 Dec 10.
We derive a partial differential equation (PDE) that models the age-specific prevalence of a disease as a function of the incidence, remission and mortality rates. The main focus is on non-communicable diseases (NCDs), although the PDE is not restricted to NCDs. As an application of the PDE, the number of persons with dementia in Germany until the year 2050 is estimated based on German incidence data and official population projections. Uncertainty is treated by different scenarios about life expectancy, number of migrants, prevalence of the disease in migrants, and scenarios about the future incidence, and mortality of demented persons. Life expectancy and incidence of dementia have the strongest impact on the future number of persons with dementia. In nearly all scenarios, our estimated case numbers exceed former estimates. Furthermore, we use an example to show that the PDE method yields more accurate results than a common alternative approach.
我们推导了一个偏微分方程(PDE),该方程将特定年龄段疾病的患病率建模为发病率、缓解率和死亡率的函数。主要关注的是非传染性疾病(NCDs),尽管该偏微分方程并不局限于非传染性疾病。作为该偏微分方程的一个应用,基于德国的发病率数据和官方人口预测,对到2050年德国痴呆症患者的数量进行了估计。通过关于预期寿命、移民数量、移民中疾病患病率的不同情景,以及关于未来痴呆症患者发病率和死亡率的情景来处理不确定性。预期寿命和痴呆症发病率对未来痴呆症患者数量的影响最大。在几乎所有情景中,我们估计的病例数都超过了以前的估计。此外,我们通过一个例子表明,偏微分方程方法比一种常见的替代方法能产生更准确的结果。