Suppr超能文献

评价高斯滤波在图像分析中区分点状突触信号和背景噪声的有效性。

Evaluation of the effectiveness of Gaussian filtering in distinguishing punctate synaptic signals from background noise during image analysis.

机构信息

Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, IA, USA.

Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, IA, USA.

出版信息

J Neurosci Methods. 2014 Feb 15;223:92-113. doi: 10.1016/j.jneumeth.2013.12.003. Epub 2013 Dec 12.

Abstract

BACKGROUND

Images in biomedical imaging research are often affected by non-specific background noise. This poses a serious problem when the noise overlaps with specific signals to be quantified, e.g. for their number and intensity. A simple and effective means of removing background noise is to prepare a filtered image that closely reflects background noise and to subtract it from the original unfiltered image. This approach is in common use, but its effectiveness in identifying and quantifying synaptic puncta has not been characterized in detail.

NEW ANALYSIS

We report on our assessment of the effectiveness of isolating punctate signals from diffusely distributed background noise using one variant of this approach, "Difference of Gaussian(s) (DoG)" which is based on a Gaussian filter.

RESULTS

We evaluated immunocytochemically stained, cultured mouse hippocampal neurons as an example, and provided the rationale for choosing specific parameter values for individual steps in detecting glutamatergic nerve terminals. The intensity and width of the detected puncta were proportional to those obtained by manual fitting of two-dimensional Gaussian functions to the local information in the original image.

COMPARISON WITH EXISTING METHODS

DoG was compared with the rolling-ball method, using biological data and numerical simulations. Both methods removed background noise, but differed slightly with respect to their efficiency in discriminating neighboring peaks, as well as their susceptibility to high-frequency noise and variability in object size.

CONCLUSIONS

DoG will be useful in detecting punctate signals, once its characteristics are examined quantitatively by experimenters.

摘要

背景

生物医学成像研究中的图像经常受到非特异性背景噪声的影响。当噪声与要定量的特定信号(例如数量和强度)重叠时,这会造成严重的问题。去除背景噪声的一种简单而有效的方法是准备一个紧密反映背景噪声的滤波图像,并从原始未滤波图像中减去它。这种方法被广泛使用,但它在识别和量化突触小点方面的有效性尚未详细描述。

新分析

我们报告了使用这种方法的一种变体“高斯差异(DoG)”评估从弥散分布的背景噪声中隔离点状信号的有效性的情况,该方法基于高斯滤波器。

结果

我们以免疫细胞化学染色的培养的小鼠海马神经元为例进行了评估,并为检测谷氨酸能神经末梢的各个步骤选择特定参数值提供了依据。检测到的小点的强度和宽度与通过手动拟合二维高斯函数到原始图像中的局部信息获得的那些成正比。

与现有方法的比较

使用生物数据和数值模拟将 DoG 与滚动球方法进行了比较。两种方法都去除了背景噪声,但在区分相邻峰值的效率、对高频噪声和物体大小变化的敏感性方面略有不同。

结论

一旦实验人员通过实验对其特征进行定量检查,DoG 将有助于检测点状信号。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验