Suppr超能文献

纤维透明质酸水凝胶通过机械和黏附线索指导间充质干细胞软骨生成。

Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Biomaterials. 2013 Jul;34(22):5571-80. doi: 10.1016/j.biomaterials.2013.04.004. Epub 2013 Apr 24.

Abstract

Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies.

摘要

静电纺丝技术因其能够形成模仿细胞外基质纳米纤维特性的支架而受到广泛关注,例如透明软骨中胶原纤维的大小和深度依赖性排列。虽然在开发用于组织工程的块状各向同性水凝胶以及理解此类支架的微环境如何影响细胞反应方面已经取得了很大进展,但在纳米纤维系统中尚未广泛研究这些影响。在这里,我们表明静电纺丝透明质酸(HA)纤维的力学性质(通过纤维内交联密度)和粘附性(通过 RGD 密度)显著影响人间充质干细胞(hMSC)的相互作用和基因表达。具体而言,hMSC 的铺展、增殖和焦点粘附形成取决于 RGD 密度,但与所研究的纤维力学范围无关。此外,牵引力介导的纤维位移通常随着更具粘附性的纤维而增加。与细胞铺展和细胞骨架组织的趋势不同,软骨生成标志物的表达受到纤维力学和粘附性的共同影响,其中较软的纤维和较低的 RGD 密度通常会增强软骨生成。这项工作不仅揭示了纤维环境中力学和粘附性的并发影响,还强调了纤维状 HA 水凝胶作为未来软骨修复策略的有前途的支架。

相似文献

1
Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.
Biomaterials. 2013 Jul;34(22):5571-80. doi: 10.1016/j.biomaterials.2013.04.004. Epub 2013 Apr 24.
2
Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.
Tissue Eng Part A. 2009 Feb;15(2):243-54. doi: 10.1089/ten.tea.2008.0067.
3
Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.
Biomaterials. 2012 May;33(15):3835-45. doi: 10.1016/j.biomaterials.2012.01.065. Epub 2012 Feb 25.
4
Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels.
Acta Biomater. 2014 Mar;10(3):1333-40. doi: 10.1016/j.actbio.2013.12.015. Epub 2013 Dec 14.
5
Donor Variation and Optimization of Human Mesenchymal Stem Cell Chondrogenesis in Hyaluronic Acid.
Tissue Eng Part A. 2018 Nov;24(21-22):1693-1703. doi: 10.1089/ten.TEA.2017.0520. Epub 2018 Sep 21.
6
Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment.
Int J Biol Macromol. 2021 Jul 1;182:1941-1952. doi: 10.1016/j.ijbiomac.2021.05.188. Epub 2021 May 29.
9
Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation.
Acta Biomater. 2020 Jan 1;101:293-303. doi: 10.1016/j.actbio.2019.11.015. Epub 2019 Nov 11.
10
High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties.
Acta Biomater. 2012 Aug;8(8):3027-34. doi: 10.1016/j.actbio.2012.04.033. Epub 2012 Apr 27.

引用本文的文献

4
Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System.
ACS Biomater Sci Eng. 2025 Feb 10;11(2):1025-1037. doi: 10.1021/acsbiomaterials.4c01455. Epub 2024 Dec 20.
5
Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds.
Adv Healthc Mater. 2024 Jun;13(16):e2303167. doi: 10.1002/adhm.202303167. Epub 2024 Apr 30.
6
Peptide-Based Biomaterials for Bone and Cartilage Regeneration.
Biomedicines. 2024 Jan 29;12(2):313. doi: 10.3390/biomedicines12020313.
7
Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis.
Biomater Adv. 2024 Feb;157:213726. doi: 10.1016/j.bioadv.2023.213726. Epub 2023 Dec 6.
8
Listen to Your Gut: Key Concepts for Bioengineering Advanced Models of the Intestine.
Adv Sci (Weinh). 2024 Feb;11(5):e2302165. doi: 10.1002/advs.202302165. Epub 2023 Nov 27.
9
Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects.
Front Aging. 2023 Jul 14;4:1217054. doi: 10.3389/fragi.2023.1217054. eCollection 2023.
10
Advanced Technologies for Potency Assay Measurement.
Adv Exp Med Biol. 2023;1420:81-95. doi: 10.1007/978-3-031-30040-0_6.

本文引用的文献

1
Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions.
Carbohydr Polym. 2012 Jan 4;87(1):926-929. doi: 10.1016/j.carbpol.2011.07.033. Epub 2011 Jul 28.
2
Effect of RGD nanospacing on differentiation of stem cells.
Biomaterials. 2013 Apr;34(12):2865-74. doi: 10.1016/j.biomaterials.2013.01.021. Epub 2013 Jan 26.
3
Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):881-6. doi: 10.1073/pnas.1207997110. Epub 2012 Dec 31.
5
Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity.
J Biomed Mater Res A. 2012 Jan;100(1):38-47. doi: 10.1002/jbm.a.33226. Epub 2011 Oct 4.
6
Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid.
Biomaterials. 2011 Dec;32(34):8771-82. doi: 10.1016/j.biomaterials.2011.08.073. Epub 2011 Sep 7.
7
Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells.
J Biomed Mater Res A. 2011 Dec 1;99(3):467-78. doi: 10.1002/jbm.a.33206. Epub 2011 Sep 1.
8
Mechanical testing of electrospun PCL fibers.
Acta Biomater. 2012 Jan;8(1):218-24. doi: 10.1016/j.actbio.2011.08.015. Epub 2011 Aug 22.
9
Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo.
Biomaterials. 2011 Sep;32(27):6425-34. doi: 10.1016/j.biomaterials.2011.05.033. Epub 2011 Jun 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验