School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China. Dept Phys, Changshu Inst Technol, Changshu 215500, People's Republic of China.
Phys Med Biol. 2014 Jan 6;59(1):97-118. doi: 10.1088/0031-9155/59/1/97. Epub 2013 Dec 12.
This paper proposes an adaptive mesh refinement strategy for the finite element method (FEM) based elastic registration model. The signature matrix for mesh refinement takes into account the regional intensity variance and the local deformation displacement. The regional intensity variance reflects detailed information for improving registration accuracy and the deformation displacement fine-tunes the mesh refinement for a more efficient algorithm. The gradient flows of two different similarity metrics, the sum of the squared difference and the spatially encoded mutual information for the mono-modal and multi-modal registrations, are used to derive external forces to drive the model to the equilibrium state. We compared our approach to three other models: (1) the conventional multi-resolution FEM registration algorithm; (2) the FEM elastic method that uses variation information for mesh refinement; and (3) the robust block matching based registration. Comparisons among different methods in a dataset with 20 CT image pairs upon artificial deformation demonstrate that our registration method achieved significant improvement in accuracies. Experimental results in another dataset of 40 real medical image pairs for both mono-modal and multi-modal registrations also show that our model outperforms the other three models in its accuracy.
本文提出了一种基于有限元方法(FEM)的弹性配准模型的自适应网格细化策略。网格细化的特征矩阵考虑了区域强度方差和局部变形位移。区域强度方差反映了改进配准精度的详细信息,而变形位移则对网格细化进行微调,以实现更高效的算法。使用两种不同相似性度量的梯度流,即单模态和多模态配准的平方和差异之和和空间编码互信息,来推导出外部力,以将模型驱动到平衡状态。我们将我们的方法与其他三种模型进行了比较:(1)传统的多分辨率 FEM 配准算法;(2)使用网格细化的变分信息的 FEM 弹性方法;(3)基于鲁棒块匹配的配准。在具有 20 对 CT 图像的数据集上对不同方法进行比较,结果表明我们的配准方法在准确性方面有显著提高。对于单模态和多模态配准的另一个包含 40 对真实医学图像的数据集的实验结果也表明,我们的模型在准确性方面优于其他三种模型。