Suppr超能文献

生物膜中双氧化剂获取的形态优化。

Morphological optimization for access to dual oxidants in biofilms.

机构信息

Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA 94035.

出版信息

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):208-13. doi: 10.1073/pnas.1315521110. Epub 2013 Dec 12.

Abstract

A major theme driving research in biology is the relationship between form and function. In particular, a longstanding goal has been to understand how the evolution of multicellularity conferred fitness advantages. Here we show that biofilms of the bacterium Pseudomonas aeruginosa produce structures that maximize cellular reproduction. Specifically, we develop a mathematical model of resource availability and metabolic response within colony features. This analysis accurately predicts the measured distribution of two types of electron acceptors: oxygen, which is available from the atmosphere, and phenazines, redox-active antibiotics produced by the bacterium. Using this model, we demonstrate that the geometry of colony structures is optimal with respect to growth efficiency. Because our model is based on resource dynamics, we also can anticipate shifts in feature geometry based on changes to the availability of electron acceptors, including variations in the external availability of oxygen and genetic manipulation that renders the cells incapable of phenazine production.

摘要

一个推动生物学研究的主要主题是形式和功能之间的关系。特别是,一个长期的目标一直是了解多细胞生物的进化如何赋予了适应性优势。在这里,我们表明,铜绿假单胞菌的生物膜产生了最大限度地促进细胞繁殖的结构。具体来说,我们开发了一个关于菌落特征内资源可用性和代谢反应的数学模型。该分析准确地预测了两种类型的电子受体的测量分布:大气中可用的氧气,以及由细菌产生的氧化还原活性抗生素吩嗪。利用该模型,我们证明了菌落结构的几何形状在生长效率方面是最优的。由于我们的模型基于资源动态,我们还可以根据电子受体可用性的变化来预测特征几何形状的变化,包括外部氧气可用性的变化和使细胞无法产生吩嗪的遗传操作。

相似文献

1
Morphological optimization for access to dual oxidants in biofilms.生物膜中双氧化剂获取的形态优化。
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):208-13. doi: 10.1073/pnas.1315521110. Epub 2013 Dec 12.

引用本文的文献

4
Molecular imaging of bacterial biofilms-a systematic review.细菌生物膜的分子成像:系统评价。
Crit Rev Microbiol. 2024 Nov;50(6):971-992. doi: 10.1080/1040841X.2023.2223704. Epub 2023 Jul 15.
5
Sampling the rainbow.采撷彩虹。
Nat Chem Biol. 2023 Aug;19(8):928-929. doi: 10.1038/s41589-023-01305-6.
9
Advances and challenges in programming pattern formation using living cells.利用活细胞进行编程模式形成的进展与挑战。
Curr Opin Chem Biol. 2022 Jun;68:102147. doi: 10.1016/j.cbpa.2022.102147. Epub 2022 Apr 23.

本文引用的文献

4
Liquid transport facilitated by channels in Bacillus subtilis biofilms.枯草芽孢杆菌生物膜中通道介导的液体运输。
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):848-52. doi: 10.1073/pnas.1216376110. Epub 2012 Dec 27.
7
Growth, metabolic partitioning, and the size of microorganisms.微生物的生长、代谢分配与个体大小。
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):495-500. doi: 10.1073/pnas.1115585109. Epub 2011 Dec 27.
9
Venation networks and the origin of the leaf economics spectrum.叶脉网络与叶片经济谱的起源。
Ecol Lett. 2011 Feb;14(2):91-100. doi: 10.1111/j.1461-0248.2010.01554.x. Epub 2010 Nov 15.
10
The energetics of genome complexity.基因组复杂度的能量学。
Nature. 2010 Oct 21;467(7318):929-34. doi: 10.1038/nature09486.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验