Suppr超能文献

用于生物膜中多种代谢物同步成像的电化学相机芯片。

Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms.

作者信息

Bellin Daniel L, Sakhtah Hassan, Zhang Yihan, Price-Whelan Alexa, Dietrich Lars E P, Shepard Kenneth L

机构信息

Department of Electrical Engineering, Columbia University, 1300 S.W. Mudd Building, 500 West 120th Street, New York, New York 10027, USA.

Department of Biological Sciences, Columbia University, Fairchild Center, 1212 Amsterdam Avenue, New York, New York 10027, USA.

出版信息

Nat Commun. 2016 Jan 27;7:10535. doi: 10.1038/ncomms10535.

Abstract

Monitoring spatial distribution of metabolites in multicellular structures can enhance understanding of the biochemical processes and regulation involved in cellular community development. Here we report on an electrochemical camera chip capable of simultaneous spatial imaging of multiple redox-active phenazine metabolites produced by Pseudomonas aeruginosa PA14 colony biofilms. The chip features an 8 mm × 8 mm array of 1,824 electrodes multiplexed to 38 parallel output channels. Using this chip, we demonstrate potential-sweep-based electrochemical imaging of whole-biofilms at measurement rates in excess of 0.2 s per electrode. Analysis of mutants with various capacities for phenazine production reveals distribution of phenazine-1-carboxylic acid (PCA) throughout the colony, with 5-methylphenazine-1-carboxylic acid (5-MCA) and pyocyanin (PYO) localized to the colony edge. Anaerobic growth on nitrate confirms the O2-dependence of PYO production and indicates an effect of O2 availability on 5-MCA synthesis. This integrated-circuit-based technique promises wide applicability in detecting redox-active species from diverse biological samples.

摘要

监测多细胞结构中代谢物的空间分布可以增强对细胞群落发育中所涉及的生化过程和调控的理解。在此,我们报告一种电化学相机芯片,它能够对铜绿假单胞菌PA14菌落生物膜产生的多种氧化还原活性吩嗪代谢物进行同步空间成像。该芯片具有一个8毫米×8毫米的阵列,包含1824个电极,这些电极被复用至38个并行输出通道。使用该芯片,我们展示了基于电位扫描的全生物膜电化学成像,测量速率超过每个电极0.2秒。对具有不同吩嗪产生能力的突变体的分析揭示了吩嗪 - 1 - 羧酸(PCA)在整个菌落中的分布,而5 - 甲基吩嗪 - 1 - 羧酸(5 - MCA)和绿脓菌素(PYO)则定位于菌落边缘。在硝酸盐上的厌氧生长证实了PYO产生对氧气的依赖性,并表明氧气可用性对5 - MCA合成有影响。这种基于集成电路的技术有望在检测来自各种生物样品的氧化还原活性物质方面具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a243/4737866/5ce585e4d1ae/ncomms10535-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验