Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
J Biol Rhythms. 2013 Dec;28(6):380-9. doi: 10.1177/0748730413508922.
Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.
在生物钟的极限环模型中,已经提出了幅度调制来解释温度补偿现象。这些模型提出,时钟周期(τ)不变性与温度变化有关,是由于系统遍历小或大的极限环,使得尽管由于底层生化反应的减慢或加速,时钟的线性速度分别降低或增加,但角速度和因此时钟周期保持不变。此外,这些模型还预测,在低温下,由不同幅度的极限环描述的生物钟的相位重置行为将有很大的不同。更具体地说,这类模型预测,在低温下,生物钟将通过其较小的幅度引起更大的相位偏移来响应扰动,反之亦然。在这里,我们介绍了我们对这一预测的测试结果:我们检查了 4 种野生型果蝇黑腹果蝇种群的生物钟的光相位反应曲线(PRC)和相位转变曲线(PTC)在 3 种不同环境温度(18、25 和 29°C)下的性质。有趣的是,我们观察到在 18°C 的低温下,果蝇的时钟对光的干扰更敏感,引发强烈的(0 型)PRC 和 PTC,而在中等(25°C)和高温(29°C)下,相同的刺激引发较弱的(1 型)反应。这种在低温和高温下分别具有强和弱相位重置的模式为生物钟的极限环幅度调制模型提供了支持。