Suppr超能文献

温度对昼夜节律时钟的夹带、相移和振幅的影响及其分子基础。

Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.

作者信息

Rensing Ludger, Ruoff Peter

机构信息

Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany.

出版信息

Chronobiol Int. 2002 Sep;19(5):807-64. doi: 10.1081/cbi-120014569.

Abstract

Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed. Periodic temperature with periods around 24 h even in the low range of 1-2 degrees C (strong Zeitgeber effect) can entrain all ectothermic (poikilothermic) organisms. This is also reflected by the phase shifts-recorded by phase response curves (PRCs)-that are elicited by step- or pulsewise changes in the temperature. The amount of phase shift (weak or strong type of PRC) depends on the amplitude of the temperature change and on its duration when applied as a pulse. Form and position of the PRC to temperature pulses are similar to those of the PRC to light pulses. A combined high/low temperature and light/dark cycle leads to a stabile phase and maximal amplitude of the circadian rhythm-when applied in phase (i.e., warm/light and cold/dark). When the two Zeitgeber cycles are phase-shifted against each other the phase of the circadian rhythm is determined by either Zeitgeber or by both, depending on the relative strength (amplitude) of both Zeitgeber signals and the sensitivity of the species/individual toward them. A phase jump of the circadian rhythm has been observed in several organisms at a certain phase relationship of the two Zeitgeber cycles. Ectothermic organisms show inter- and intraspecies plus seasonal variations in the temperature limits for the expression of the clock, either of the basic molecular mechanism, and/or the dependent variables. A step-down from higher temperatures or a step-up from lower temperatures to moderate temperatures often results in initiation of oscillations from phase positions that are about 180 degrees different. This may be explained by holding the clock at different phase positions (maximum or minimum of a clock component) or by significantly different levels of clock components at the higher or lower temperatures. Different permissive temperatures result in different circadian amplitudes, that usually show a species-specific optimum. In endothermic (homeothermic) organisms periodic temperature changes of about 24 h often cause entrainment, although with considerable individual differences, only if they are of rather high amplitudes (weak Zeitgeber effects). The same applies to the phase-shifting effects of temperature pulses. Isolated bird pineals and rat suprachiasmatic nuclei tissues on the other hand, respond to medium high temperature pulses and reveal PRCs similar to that of light signals. Therefore, one may speculate that the self-selected circadian rhythm of body temperature in reptiles or the endogenously controlled body temperature in homeotherms (some of which show temperature differences of more than 2 degrees C) may, in itself, serve as an internal entraining system. The so-called heterothermic mammals (undergoing low body temperature states in a daily or seasonal pattern) may be more sensitive to temperature changes. Effects of temperature elevation on the molecular clock mechanisms have been shown in Neurospora (induction of the frequency (FRQ) protein) and in Drosophila (degradation of the period (PER) and timeless (TIM) protein) and can explain observed phase shifts of rhythms in conidiation and locomotor activity, respectively. Temperature changes probably act directly on all processes of the clock mechanism some being more sensitive than the others. Temperature changes affect membrane properties, ion homeostasis, calcium influx, and other signal cascades (cAMP, cGMP, and the protein kinases A and C) (indirect effects) and may thus influence, in particular, protein phosphorylation processes of the clock mechanism. The temperature effects resemble to some degree those induced by light or by light-transducing neurons and their transmitters. In ectothermic vertebrates temperature changes significantly affect the melatonin rhythm, which in turn exerts entraining (phase shifting) functions.

摘要

本文综述了温度及温度变化对蓝细菌、单细胞藻类、植物、真菌、节肢动物和脊椎动物生物钟的影响。即使在1-2摄氏度的低温范围内,周期约为24小时的周期性温度(强大的授时因子效应)也能使所有变温(冷血)生物产生昼夜节律。这也反映在相位响应曲线(PRC)记录的相位移动上,该移动是由温度的阶跃或脉冲变化引起的。相位移动的幅度(PRC的弱或强类型)取决于温度变化的幅度及其作为脉冲应用时的持续时间。温度脉冲的PRC的形式和位置与光脉冲的PRC相似。当高温/低温和光/暗周期以同相应用(即温暖/明亮和寒冷/黑暗)时,会导致昼夜节律的稳定相位和最大幅度。当两个授时因子周期相互移相时,昼夜节律的相位取决于其中一个授时因子或两者,这取决于两个授时因子信号的相对强度(幅度)以及物种/个体对它们的敏感性。在两个授时因子周期的特定相位关系下,已在几种生物中观察到昼夜节律的相位跳跃。变温生物在生物钟表达的温度限制方面表现出种间、种内以及季节性变化,这些变化涉及基本分子机制和/或相关变量。从较高温度下降或从较低温度上升到适度温度通常会导致从大约相差180度的相位位置开始振荡。这可能是由于生物钟处于不同的相位位置(生物钟组件的最大值或最小值),或者是由于在较高或较低温度下生物钟组件的水平存在显著差异。不同的允许温度会导致不同的昼夜节律幅度,通常显示出物种特异性的最佳值。在恒温(温血)生物中,约24小时的周期性温度变化通常会导致昼夜节律的产生,尽管存在相当大的个体差异,前提是它们的幅度相当高(弱授时因子效应)。温度脉冲的移相效应也是如此。另一方面,分离的鸟类松果体和大鼠视交叉上核组织对中等高温脉冲有反应,并显示出与光信号类似的PRC。因此,可以推测爬行动物体温的自我选择昼夜节律或恒温动物内源性控制的体温(其中一些体温差异超过2摄氏度)本身可能作为一种内部同步系统。所谓的异温哺乳动物(以每日或季节性模式经历低体温状态)可能对温度变化更敏感。温度升高对分子生物钟机制的影响已在粗糙脉孢菌(频率(FRQ)蛋白的诱导)和果蝇(周期(PER)和无时间(TIM)蛋白的降解)中得到证实,这分别可以解释在分生孢子形成和运动活动中观察到的节律相位移动。温度变化可能直接作用于生物钟机制的所有过程,其中一些过程比其他过程更敏感。温度变化会影响膜特性、离子稳态、钙内流和其他信号级联反应(cAMP、cGMP以及蛋白激酶A和C)(间接效应),从而可能特别影响生物钟机制的蛋白质磷酸化过程。温度效应在某种程度上类似于由光或光转导神经元及其递质诱导的效应。在变温脊椎动物中,温度变化会显著影响褪黑素节律,而褪黑素节律反过来又发挥同步(移相)功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验