Gibo Shingo, Kunihiro Teiji, Hatsuda Tetsuo, Kurosawa Gen
RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Japan.
Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kyoto, Japan.
PLoS Comput Biol. 2025 Jul 22;21(7):e1013246. doi: 10.1371/journal.pcbi.1013246. eCollection 2025 Jul.
Numerous biological processes accelerate as temperatures increase, but the period of circadian rhythms remains constant, known as temperature compensation, while synchronizing with the 24h light-dark cycle. We theoretically explore the possible relevance of waveform distortions in circadian gene-protein dynamics to the temperature compensation and synchronization. Our analysis of the Goodwin model provides a coherent explanation of most of temperature compensation hypotheses. Using the renormalization group method, we analytically demonstrate that the decreasing phase of circadian protein oscillations should lengthen with increasing temperature, leading to waveform distortions to maintain a stable period. This waveform-period correlation also occurs in other oscillators like Lotka-Volterra, van der Pol models, and a realistic model for mammalian circadian rhythms. A reanalysis of known data nicely confirms our findings on waveform distortion and its impact on synchronization range. Thus we conclude that circadian rhythm waveforms are fundamental to both temperature compensation and synchronization.
随着温度升高,许多生物过程会加速,但昼夜节律的周期保持不变,这被称为温度补偿,同时与24小时明暗周期同步。我们从理论上探讨了昼夜节律基因-蛋白质动力学中的波形畸变与温度补偿和同步之间的可能关联。我们对古德温模型的分析为大多数温度补偿假说提供了连贯的解释。使用重整化群方法,我们通过分析证明,昼夜节律蛋白振荡的下降阶段应随温度升高而延长,从而导致波形畸变以维持稳定的周期。这种波形-周期相关性也出现在其他振荡器中,如洛特卡-沃尔泰拉模型、范德波尔模型以及哺乳动物昼夜节律的现实模型中。对已知数据的重新分析很好地证实了我们关于波形畸变及其对同步范围影响的发现。因此,我们得出结论,昼夜节律波形对于温度补偿和同步都是至关重要的。