Suppr超能文献

通过钙敏感受体产生的细胞内 Ca2+ 振荡是由蛋白激酶 Cα 在 Thr888 处的负反馈介导的。

Intracellular Ca2+ oscillations generated via the Ca2+-sensing receptor are mediated by negative feedback by PKCα at Thr888.

机构信息

Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, California; and.

出版信息

Am J Physiol Cell Physiol. 2014 Feb 1;306(3):C298-306. doi: 10.1152/ajpcell.00194.2013. Epub 2013 Dec 11.

Abstract

To clarify the mechanism(s) underlying intracellular Ca(2+) concentration ([Ca(2+)]i) oscillations induced by an elevation in extracellular Ca(2+) concentration ([Ca(2+)]e) via the extracellular Ca(2+)-sensing receptor (CaR), we analyzed the pattern of [Ca(2+)]i response in multiple (2,303) individual HEK-293 cells transfected with the human CaR. An increase in the [Ca(2+)]e from 1.5 to 3 mM produced oscillatory fluctuations in [Ca(2+)]i in 70% of the cell population. To determine the role of PKC in the generation of [Ca(2+)]i oscillations, cells were exposed to increasing concentrations (0.5-5 μM) of the preferential PKC inhibitor Ro-31-8220 before stimulation by extracellular Ca(2+). Ro-31-8220 at 3-5 μM completely eliminated the [Ca(2+)]e-evoked [Ca(2+)]i oscillations and transformed the pattern to a peak and sustained plateau response. Treatment with other broad PKC inhibitors, including GFI or Gö6983, produced an identical response. Similarly, treatment with Ro-31-8220 or GFI eliminated [Ca(2+)]e-evoked [Ca(2+)]i oscillations in colon-derived SW-480 cells expressing the CaR. Treatment with inhibitors targeting classic PKCs, including Gö6976 and Ro-32-0432 as well as small interfering RNA-mediated knockdown of PKCα, strikingly reduced the proportion of cell displaying [Ca(2+)]e-evoked [Ca(2+)]i oscillations. Furthermore, none of the cells analyzed expressing a CaR mutant in which the major PKC phosphorylation site Thr(888) was converted to alanine (CaRT888A) showed [Ca(2+)]i oscillations after CaR activation. Our results show that [Ca(2+)]i oscillations induced by activation of the CaR in response to an increase in extracellular Ca(2+) or exposure to the calcimimetic R-568 result from negative feedback involving PKCα-mediated phosphorylation of the CaR at Thr(888).

摘要

为了阐明通过细胞外钙敏感受体(CaR)升高细胞外钙浓度([Ca(2+)]e)引起的细胞内钙浓度([Ca(2+)]i)振荡的机制,我们分析了转染人 CaR 的多个(2,303)个 HEK-293 细胞中[Ca(2+)]i 反应的模式。[Ca(2+)]e 从 1.5 增加到 3 mM 会导致 70%的细胞群体中[Ca(2+)]i 产生振荡波动。为了确定 PKC 在[Ca(2+)]i 振荡产生中的作用,在用细胞外钙刺激之前,细胞暴露于递增浓度(0.5-5 μM)的优选 PKC 抑制剂 Ro-31-8220。3-5 μM 的 Ro-31-8220 完全消除了[Ca(2+)]e 诱发的[Ca(2+)]i 振荡,并将模式转变为峰和持续平台反应。用其他广泛的 PKC 抑制剂(包括 GFI 或 Gö6983)处理产生相同的反应。同样,用 Ro-31-8220 或 GFI 处理消除了表达 CaR 的结肠衍生 SW-480 细胞中[Ca(2+)]e 诱发的[Ca(2+)]i 振荡。用靶向经典 PKC 的抑制剂(包括 Gö6976 和 Ro-32-0432)以及 PKCα 的小干扰 RNA 介导的敲低处理,显著降低了显示[Ca(2+)]e 诱发的[Ca(2+)]i 振荡的细胞比例。此外,在用 Thr(888)转化为丙氨酸的 CaR 突变体(CaRT888A)转染的分析细胞中,没有一个在 CaR 激活后显示[Ca(2+)]i 振荡。我们的结果表明,响应细胞外钙增加或暴露于钙敏感受体激动剂 R-568 激活 CaR 引起的[Ca(2+)]i 振荡是由 PKCα 介导的 Thr(888)磷酸化负反馈引起的。

相似文献

1
Intracellular Ca2+ oscillations generated via the Ca2+-sensing receptor are mediated by negative feedback by PKCα at Thr888.
Am J Physiol Cell Physiol. 2014 Feb 1;306(3):C298-306. doi: 10.1152/ajpcell.00194.2013. Epub 2013 Dec 11.
2
Ca2+-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor require negative feedback by protein kinase C.
J Biol Chem. 2002 Dec 6;277(49):46871-6. doi: 10.1074/jbc.M207083200. Epub 2002 Sep 27.
4
Calcium sensing receptor activation by a calcimimetic suggests a link between cooperativity and intracellular calcium oscillations.
J Biol Chem. 2002 Dec 20;277(51):49691-9. doi: 10.1074/jbc.M205578200. Epub 2002 Oct 23.
5
Ca(2+) mobilization through dorsal root ganglion Ca(2+)-sensing receptor stably expressed in HEK293 cells.
Am J Physiol Cell Physiol. 2007 May;292(5):C1895-905. doi: 10.1152/ajpcell.00404.2006. Epub 2007 Jan 31.
7
Calcimimetic R-568 effects on activity of R990G polymorphism of calcium-sensing receptor.
J Mol Endocrinol. 2010 Oct;45(4):245-56. doi: 10.1677/JME-10-0034. Epub 2010 Aug 3.
10
Requirement of the TRPC1 cation channel in the generation of transient Ca2+ oscillations by the calcium-sensing receptor.
J Biol Chem. 2006 Dec 15;281(50):38730-7. doi: 10.1074/jbc.M605956200. Epub 2006 Oct 17.

引用本文的文献

1
Inhibition of the calcium-sensing receptor by extracellular phosphate ions and by intracellular phosphorylation.
Front Physiol. 2023 Mar 31;14:1154374. doi: 10.3389/fphys.2023.1154374. eCollection 2023.
2
Temperature sensing by the calcium-sensing receptor.
Front Physiol. 2023 Feb 2;14:1117352. doi: 10.3389/fphys.2023.1117352. eCollection 2023.
3
Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms.
J Endocr Soc. 2021 Jun 5;5(9):bvab057. doi: 10.1210/jendso/bvab057. eCollection 2021 Sep 1.
5
Inhibitors of DAG metabolism suppress CCR2 signalling in human monocytes.
Br J Pharmacol. 2019 Aug;176(15):2736-2749. doi: 10.1111/bph.14695. Epub 2019 Jun 17.
6
Protein kinase D1 (PKD1) phosphorylation on Ser by type I p21-activated kinase (PAK) regulates PKD1 localization.
J Biol Chem. 2017 Jun 9;292(23):9523-9539. doi: 10.1074/jbc.M116.771394. Epub 2017 Apr 13.
7
The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future.
Front Physiol. 2016 Dec 15;7:563. doi: 10.3389/fphys.2016.00563. eCollection 2016.

本文引用的文献

3
Calcium sensing receptor signalling in physiology and cancer.
Biochim Biophys Acta. 2013 Jul;1833(7):1732-44. doi: 10.1016/j.bbamcr.2012.12.011. Epub 2012 Dec 23.
4
Protein kinase C, an elusive therapeutic target?
Nat Rev Drug Discov. 2012 Dec;11(12):937-57. doi: 10.1038/nrd3871.
5
The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP.
Nature. 2012 Dec 6;492(7427):123-7. doi: 10.1038/nature11588. Epub 2012 Nov 11.
6
Protein kinase C inhibitor AEB071 targets ocular melanoma harboring GNAQ mutations via effects on the PKC/Erk1/2 and PKC/NF-κB pathways.
Mol Cancer Ther. 2012 Sep;11(9):1905-14. doi: 10.1158/1535-7163.MCT-12-0121. Epub 2012 May 31.
7
CRAC channels drive digital activation and provide analog control and synergy to Ca(2+)-dependent gene regulation.
Curr Biol. 2012 Feb 7;22(3):242-7. doi: 10.1016/j.cub.2011.12.025. Epub 2012 Jan 12.
8
Negative cross-talk between calcium-sensing receptor and β-catenin signaling systems in colonic epithelium.
J Biol Chem. 2012 Jan 6;287(2):1158-67. doi: 10.1074/jbc.M111.274589. Epub 2011 Nov 17.
9
The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease.
Annu Rev Physiol. 2012;74:271-97. doi: 10.1146/annurev-physiol-020911-153318. Epub 2011 Oct 17.
10
Membrane depolarization increases membrane PtdIns(4,5)P2 levels through mechanisms involving PKC βII and PI4 kinase.
J Biol Chem. 2011 Nov 18;286(46):39760-7. doi: 10.1074/jbc.M111.289090. Epub 2011 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验