Paek Insu, Holland Paul
Educational Psychology & Learning Systems, Florida State University, 3204D Stone Building, 1114 W. Call St., Tallahassee, FL, 32306-4453, USA,
Psychometrika. 2015 Jun;80(2):406-11. doi: 10.1007/s11336-013-9394-5. Epub 2013 Dec 13.
When differential item functioning (DIF) is investigated, DIF classification is made using statistical test results and estimated DIF sizes in practice. One of the well-known DIF classifications is that of the Educational Testing Service (ETS) A (negligible DIF), B (medium DIF), and C (large DIF) rules. This article provides a clarifying note on (a) a sketch of the proof of the asymptotic normality of what is known as the Mantel-Haenszel (MH) delta, which provides the basis of a point and an interval null hypothesis test based on the MH delta, and (b) how to conduct an interval null hypothesis test using the MH delta, which is necessary for the C DIF classification.
在研究项目功能差异(DIF)时,实际中会根据统计检验结果和估计的DIF大小进行DIF分类。其中一种广为人知的DIF分类是教育考试服务中心(ETS)的A(可忽略的DIF)、B(中等DIF)和C(大DIF)规则。本文对以下内容给出了说明:(a)被称为曼特尔-亨塞尔(MH)δ的渐近正态性证明概要,它是基于MHδ的点和区间原假设检验的基础;(b)如何使用MHδ进行区间原假设检验,这对于C类DIF分类是必要的。