Suppr超能文献

天然存在的糖代谢异常肽胰淀素变体:对多种细胞功能的不同效力及结构-功能关系。

Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation.

机构信息

From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036.

出版信息

J Biol Chem. 2014 Feb 14;289(7):4455-69. doi: 10.1074/jbc.M113.520916. Epub 2013 Dec 12.

Abstract

Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca(2+) levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.

摘要

胰抑素(PST)是一种源自嗜铬粒蛋白 A 的肽,是葡萄糖诱导胰岛素分泌的有效生理抑制剂。PST 还能触发肝脏中的糖原分解,并减少脂肪细胞和肝细胞对葡萄糖的摄取。在这里,我们在 PST 序列中探查了遗传变异,并在其功能重要的羧基末端结构域中鉴定了两个变体:E287K 和 G297S。为了了解这些氨基酸取代的功能意义,我们测试了野生型(PST-WT)、PST-287K 和 PST-297S 肽对各种细胞过程/事件的影响。抑制胰岛素刺激的葡萄糖摄取的功效顺序为:PST-297S > PST-287K > PST-WT。PST 肽在各种细胞类型中也显示出相同的增强细胞内一氧化氮和 Ca(2+)水平的功效顺序。此外,PST 肽以以下顺序激活糖异生基因:PST-297S ≈ PST-287K > PST-WT。与这些体外结果一致,我们的研究人群(n = 410)中常见的 PST 变体等位基因 Ser-297 与显著更高的(与野生型 Gly-297 等位基因相比,高约 17mg/dl)血浆葡萄糖水平相关。分子建模和分子动力学模拟预测了 α-螺旋含量的以下顺序:PST-297S > PST-287K > PST-WT。相应地,PST 肽的圆二色谱分析显示了它们在全局结构上的显著差异(例如,形成 α-螺旋的倾向性顺序为:PST-297S ≈ PST-287K > PST-WT)。这项研究为人类 PST 变体(可能在全世界约 3 亿人中发生)的增强效力/功效提供了分子基础,并对葡萄糖/胰岛素动态平衡的个体间差异具有定量意义。

相似文献

3
Pancreastatin is an endogenous peptide that regulates glucose homeostasis.
Physiol Genomics. 2013 Nov 15;45(22):1060-71. doi: 10.1152/physiolgenomics.00131.2013. Epub 2013 Sep 24.
8
Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin.
Regul Pept. 2010 Apr 9;161(1-3):8-14. doi: 10.1016/j.regpep.2010.02.005. Epub 2010 Feb 23.
9
Pancreastatin inhibits insulin action in rat adipocytes.
Am J Physiol. 1998 Dec;275(6):E1055-60. doi: 10.1152/ajpendo.1998.275.6.E1055.
10
A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis.
J Biol Chem. 2009 Oct 16;284(42):28498-509. doi: 10.1074/jbc.M109.020636. Epub 2009 Aug 25.

引用本文的文献

1
NADPH Oxidase 3: Beyond the Inner Ear.
Antioxidants (Basel). 2024 Feb 8;13(2):219. doi: 10.3390/antiox13020219.
2
Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis.
Cell Mol Life Sci. 2023 Aug 29;80(9):271. doi: 10.1007/s00018-023-04908-3.
3
Chromogranin A-derived peptides pancreastatin and catestatin: emerging therapeutic target for diabetes.
Amino Acids. 2023 May;55(5):549-561. doi: 10.1007/s00726-023-03252-x. Epub 2023 Mar 13.
4
The immunomodulatory functions of chromogranin A-derived peptide pancreastatin.
Peptides. 2022 Dec;158:170893. doi: 10.1016/j.peptides.2022.170893. Epub 2022 Oct 13.
5
Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation.
Ann N Y Acad Sci. 2019 Nov;1455(1):34-58. doi: 10.1111/nyas.14249. Epub 2019 Oct 6.
7
A haplotype variant of the human chromogranin A gene () promoter increases CHGA expression and the risk for cardiometabolic disorders.
J Biol Chem. 2017 Aug 25;292(34):13970-13985. doi: 10.1074/jbc.M117.778134. Epub 2017 Jun 30.
8
Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity.
Front Endocrinol (Lausanne). 2017 Feb 8;8:20. doi: 10.3389/fendo.2017.00020. eCollection 2017.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.
PLoS One. 2013 Apr 18;8(4):e61393. doi: 10.1371/journal.pone.0061393. Print 2013.
6
Chromogranin A and derived peptides in health and disease.
J Mol Neurosci. 2012 Oct;48(2):347-56. doi: 10.1007/s12031-012-9728-2. Epub 2012 Mar 3.
8
Hansa: an automated method for discriminating disease and neutral human nsSNPs.
Hum Mutat. 2012 Feb;33(2):332-7. doi: 10.1002/humu.21642. Epub 2011 Dec 9.
9
The extended granin family: structure, function, and biomedical implications.
Endocr Rev. 2011 Dec;32(6):755-97. doi: 10.1210/er.2010-0027. Epub 2011 Aug 23.
10
Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy.
Diabetes. 2010 Nov;59(11):2697-707. doi: 10.2337/db10-1032. Epub 2010 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验