Jubery Talukder Z, Srivastava Soumya K, Dutta Prashanta
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA.
Electrophoresis. 2014 Mar;35(5):691-713. doi: 10.1002/elps.201300424. Epub 2014 Feb 4.
In recent years, dielectrophoretic force has been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. This specific electrokinetic technique has been used for trapping, sorting, focusing, filtration, patterning, assembly, and separating biological entities/particles suspended in a buffer medium. Dielectrophoretic forces acting on particles depend on various parameters, for example, charge of the particle, geometry of the device, dielectric constant of the medium and particle, and physiology of the particle. Therefore, to design an effective micro-/nanofluidic separation platform, it is necessary to understand the role of the aforementioned parameters on particle motion. In this paper, we review studies particularly related to dielectrophoretic separation in microfluidic devices. Both experimental and theoretical works by several researchers are highlighted in this article covering AC and DC DEP. In addition, AC/DC DEP, which uses a combination of low frequency AC and DC voltage to manipulate bioparticles, has been discussed briefly. Contactless DEP, a variation of DC DEP in which electrodes do not come in contact with particles, has also been reviewed. Moreover, dielectrophoretic force-based field flow fractionations are featured to demonstrate the bioparticle separation in microfluidic device. In numerical front, a comprehensive review is provided starting from the most simplified effective moment Stokes-drag (EMSD) method to the most advanced interface resolved method. Unlike EMSD method, recently developed advanced numerical methods consider the size and shape of the particle in the electric and flow field calculations, and these methods provide much more accurate results than the EMSD method for microparticles.
近年来,介电泳力已被用于操控胶体、惰性颗粒以及生物微粒,如红细胞、白细胞、血小板、癌细胞、细菌、酵母、微生物、蛋白质、DNA等。这种特定的电动技术已被用于捕获、分选、聚焦、过滤、图案化、组装以及分离悬浮在缓冲介质中的生物实体/颗粒。作用于颗粒的介电泳力取决于多种参数,例如颗粒的电荷、装置的几何形状、介质和颗粒的介电常数以及颗粒的生理特性。因此,要设计一个有效的微纳流体分离平台,有必要了解上述参数对颗粒运动的作用。在本文中,我们回顾了与微流控装置中介电泳分离特别相关的研究。本文重点介绍了几位研究人员的实验和理论工作,涵盖交流和直流介电泳。此外,还简要讨论了使用低频交流和直流电压组合来操控生物颗粒的交流/直流介电泳。非接触式介电泳作为直流介电泳的一种变体,其中电极不与颗粒接触,也进行了综述。此外,还介绍了基于介电泳力的场流分级法,以展示微流控装置中的生物颗粒分离。在数值方面,从最简化的有效矩斯托克斯阻力(EMSD)方法到最先进的界面解析方法进行了全面综述。与EMSD方法不同,最近开发的先进数值方法在电场和流场计算中考虑了颗粒的大小和形状,并且这些方法为微颗粒提供了比EMSD方法更准确的结果。