Suppr超能文献

超声辅助制备生物相容性磁性羟基磷灰石。

Ultrasound-assisted fabrication of a biocompatible magnetic hydroxyapatite.

作者信息

Zhou Gang, Song Wei, Hou Yongzhao, Li Qing, Deng Xuliang, Fan Yubo

机构信息

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China; Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, People's Republic of China.

出版信息

J Biomed Mater Res A. 2014 Oct;102(10):3704-12. doi: 10.1002/jbm.a.35043. Epub 2013 Dec 12.

Abstract

This work describes the fabrication and characterization of a biocompatible magnetic hydroxyapatite (HA) using an ultrasound-assisted co-precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structure and chemical composition of the produced samples. The M-H loops of synthesized materials were traced using a vibrating sample magnetometer (VSM) and the biocompatibility was evaluated by cell culture and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Furthermore, in vivo histopathological examinations were used to evaluate the potential toxicological effects of Fe₃O₄-HA composites on kidney of SD rats injected intraperitoneally with Fe₃O₄-HA particles. The results showed that magnetic iron oxide particles first replace OH ions of HA, which are parallel to the c axis, and then enter the HA crystal lattice which produces changes in the crystal surface of HA. Chemical bond interaction was observed between PO₄³⁻ groups of HA and iron ions of Fe₃O₄. The saturation magnetization (MS ) of Fe₃O₄-HA composites was 46.36 emu/g obtained from VSM data. Cell culture and MTT assays indicated that HA could affect the growth and proliferation of HEK-293 cells. This Fe₃O₄-HA composite produced no negative effects on cell morphology, viability, and proliferation and exhibited remarkable biocompatibility. Moreover, no inflammatory cell infiltration was observed in kidney histopathology slices. Therefore, this study succeeds to develop a Fe₃O₄-HA composite as a prospective biomagnetic material for future applications.

摘要

本研究描述了一种通过超声辅助共沉淀法制备生物相容性磁性羟基磷灰石(HA)及其表征。利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和透射电子显微镜(TEM)对所制备样品的结构和化学成分进行表征。使用振动样品磁强计(VSM)追踪合成材料的磁滞回线(M-H loops),并通过细胞培养和MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐)试验评估生物相容性。此外,通过体内组织病理学检查评估腹腔注射Fe₃O₄-HA颗粒的SD大鼠肾脏中Fe₃O₄-HA复合材料的潜在毒理学效应。结果表明,磁性氧化铁颗粒首先取代与c轴平行的HA中的OH离子,然后进入HA晶格,这导致HA晶体表面发生变化。观察到HA的PO₄³⁻基团与Fe₃O₄的铁离子之间存在化学键相互作用。根据VSM数据,Fe₃O₄-HA复合材料的饱和磁化强度(Ms)为46.36 emu/g。细胞培养和MTT试验表明,HA会影响HEK-293细胞的生长和增殖。这种Fe₃O₄-HA复合材料对细胞形态、活力和增殖没有负面影响,并表现出显著的生物相容性。此外,在肾脏组织病理学切片中未观察到炎性细胞浸润。因此,本研究成功开发出一种Fe₃O₄-HA复合材料作为未来应用的潜在生物磁性材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验