Suppr超能文献

高能表面工程金属氧化物微纳晶及其应用。

High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China.

出版信息

Acc Chem Res. 2014 Feb 18;47(2):308-18. doi: 10.1021/ar400092x. Epub 2013 Dec 17.

Abstract

Because many physical and chemical processes occur at surfaces, surface atomic structure is a critical factor affecting the properties of materials. Due to the presence of high-density atomic steps and edges and abundant unsaturated coordination sites, micro- and nanocrystallites with high-energy surfaces usually exhibit greater reactivity than those with low-energy surfaces. However, high-energy crystal surfaces are usually lost during crystal growth as the total surface energy is minimized. Therefore, the selective exposure of high-energy facets at the surface of micro- and nanocrystallites is an important and challenging research topic. Metal oxides play important roles in surface-associated applications, including catalysis, gas sensing, luminescence, and antibiosis. The synthesis of metal oxide micro- and nanocrystallites with specific surfaces, particularly those with high surface energies, is more challenging than the synthesis of metal crystals due to the presence of strong metal-oxygen bonds and diverse crystal structures. In this Account, we briefly summarize recent progress in the surface-structure-controlled synthesis of several typical metal oxide micro- and nanocrystallites, including wurtzite ZnO, anatase TiO2, rutile SnO2, and rocksalt-type metal oxides. We also discuss the improvement of surface properties, focusing on high-energy surfaces. Because of the huge quantity and diverse structure of metal oxides, this Account is not intended to be comprehensive. Instead, we discuss salient features of metal oxide micro- and nanocrystallites using examples primarily from our group. We first discuss general strategies for tuning the surface structure of metal oxide micro- and nanocrystallites, presenting several typical examples. For each example, we describe the basic crystallographic characteristics as well as the thermodynamic (i.e., tuning surface energy) or kinetic (i.e., tuning reaction rates) strategies we have used to synthesize micro- and nanocrystallites with high surface energies. We discuss the structural features of the specific facets and analyze the basis for the enhanced performance of the metal oxide micro- and nanocrystallites in water splitting, the degradation of organic pollutants, gas sensing, catalysis, luminescence, and antibiosis. Finally, we note the future trends in high-energy-facet metal oxide micro- and nanocrystallite research. A comprehensive understanding of the properties of metal oxide micro- and nanocrystallites with high-energy crystal surfaces and related synthetic strategies will facilitate the rational design of functional nanomaterials with desired characteristics.

摘要

由于许多物理和化学过程都发生在表面,因此表面原子结构是影响材料性能的关键因素。由于存在高密度的原子台阶和边缘以及丰富的不饱和配位位点,具有高能表面的微纳晶体通常比具有低能表面的晶体表现出更高的反应性。然而,在晶体生长过程中,高能晶面通常会丢失,因为总表面能最小化。因此,选择性暴露微纳晶体高能晶面是一个重要且具有挑战性的研究课题。金属氧化物在表面相关应用中发挥着重要作用,包括催化、气体传感、发光和抗菌。合成具有特定表面的金属氧化物微纳晶体,特别是具有高能表面的金属氧化物微纳晶体,比合成金属晶体更具挑战性,这是因为金属氧化物具有较强的金属-氧键和多种晶体结构。在本综述中,我们简要总结了近年来在几种典型金属氧化物微纳晶体的表面结构控制合成方面的进展,包括纤锌矿 ZnO、锐钛矿 TiO2、金红石 SnO2 和岩盐型金属氧化物。我们还讨论了表面性能的改善,重点关注高能表面。由于金属氧化物的数量巨大且结构多样,本综述并非旨在全面介绍,而是主要通过我们小组的实例来讨论金属氧化物微纳晶体的显著特征。我们首先讨论了调控金属氧化物微纳晶体表面结构的一般策略,并呈现了几个典型的例子。对于每个例子,我们描述了基本的晶体学特征以及我们用于合成具有高能表面的微纳晶体的热力学(即调节表面能)或动力学(即调节反应速率)策略。我们讨论了特定晶面的结构特征,并分析了金属氧化物微纳晶体在水分解、有机污染物降解、气体传感、催化、发光和抗菌方面性能增强的基础。最后,我们注意到高能晶面金属氧化物微纳晶体研究的未来趋势。全面了解具有高能晶体表面的金属氧化物微纳晶体的性质和相关合成策略将有助于合理设计具有所需特性的功能纳米材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验