Department of Mathematics and Statistics, University of Turku, Turku, Finland ; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
Systems Biology Lab, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
PLoS One. 2013 Dec 9;8(12):e82340. doi: 10.1371/journal.pone.0082340. eCollection 2013.
Genetic and environmental determinants of altered cellular function, disease state, and drug response are increasingly studied using time-resolved transcriptomic profiles. While it is widely acknowledged that the rate of biological processes may vary between individuals, data analysis approaches that go beyond evaluating differential expression of single genes have so far not taken this variability into account. To this end, we introduce here a robust multi-gene data analysis approach and evaluate it in a biomarker discovery scenario across four publicly available datasets. In our evaluation, existing methods perform surprisingly poorly on time-resolved data; only the approach taking the variability into account yields reproducible and biologically plausible results. Our results indicate the need to capture gene expression between potentially heterogeneous individuals at multiple time points, and highlight the importance of robust data analysis in the presence of heterogeneous gene expression responses.
使用时间分辨转录组谱越来越多地研究改变细胞功能、疾病状态和药物反应的遗传和环境决定因素。虽然人们普遍认识到生物过程的速度可能因人而异,但迄今为止,超越评估单个基因差异表达的数据分析方法并未考虑到这种可变性。为此,我们在这里介绍了一种稳健的多基因数据分析方法,并在四个公开可用的数据集的生物标志物发现场景中对其进行了评估。在我们的评估中,现有的方法在时间分辨数据上的表现出人意料地差;只有考虑到这种可变性的方法才能得出可重复和具有生物学意义的结果。我们的研究结果表明,有必要在多个时间点捕捉潜在异质个体之间的基因表达,并强调在存在异质基因表达反应的情况下进行稳健数据分析的重要性。