Suppr超能文献

闭环人工胰腺算法:模型预测控制的情况

Algorithms for a closed-loop artificial pancreas: the case for model predictive control.

作者信息

Bequette B Wayne

机构信息

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590.

出版信息

J Diabetes Sci Technol. 2013 Nov 1;7(6):1632-43. doi: 10.1177/193229681300700624.

Abstract

The relative merits of model predictive control (MPC) and proportional-integral-derivative (PID) control are discussed, with the end goal of a closed-loop artificial pancreas (AP). It is stressed that neither MPC nor PID are single algorithms, but rather are approaches or strategies that may be implemented very differently by different engineers. The primary advantages to MPC are that (i) constraints on the insulin delivery rate (and/or insulin on board) can be explicitly included in the control calculation; (ii) it is a general framework that makes it relatively easy to include the effect of meals, exercise, and other events that are a function of the time of day; and (iii) it is flexible enough to include many different objectives, from set-point tracking (target) to zone (control to range). In the end, however, it is recognized that the control algorithm, while important, represents only a portion of the effort required to develop a closed-loop AP. Thus, any number of algorithms/approaches can be successful--the engineers involved in the design must have experience with the particular technique, including the important experience of implementing the algorithm in human studies and not simply through simulation studies.

摘要

讨论了模型预测控制(MPC)和比例积分微分(PID)控制的相对优点,最终目标是实现闭环人工胰腺(AP)。需要强调的是,MPC和PID都不是单一的算法,而是不同工程师可能以非常不同的方式实现的方法或策略。MPC的主要优点包括:(i)胰岛素输注速率(和/或体内胰岛素量)的约束可以明确纳入控制计算中;(ii)它是一个通用框架,相对容易纳入饮食、运动以及其他随一天中的时间变化的事件的影响;(iii)它足够灵活,可以纳入许多不同的目标,从设定点跟踪(目标)到区域控制(控制在范围内)。然而,最终人们认识到,控制算法虽然很重要,但只是开发闭环人工胰腺所需努力的一部分。因此,任何数量的算法/方法都可能成功——参与设计的工程师必须具备使用特定技术的经验,包括在人体研究中而不仅仅是通过模拟研究来实现该算法的重要经验。

相似文献

1
Algorithms for a closed-loop artificial pancreas: the case for model predictive control.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1632-43. doi: 10.1177/193229681300700624.
2
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
3
Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas.
Diabetes Care. 2016 Jul;39(7):1135-42. doi: 10.2337/dc15-2344. Epub 2016 Jun 11.
4
Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1621-31. doi: 10.1177/193229681300700623.
8
Zone-MPC Automated Insulin Delivery Algorithm Tuned for Pregnancy Complicated by Type 1 Diabetes.
Front Endocrinol (Lausanne). 2022 Mar 22;12:768639. doi: 10.3389/fendo.2021.768639. eCollection 2021.

引用本文的文献

1
Validation in diabetic rats of a fully automated insulin delivery system based on impulsive offset-free MPC control.
PLoS One. 2025 Sep 4;20(9):e0330121. doi: 10.1371/journal.pone.0330121. eCollection 2025.
4
Diabetes Technology Meeting 2021.
J Diabetes Sci Technol. 2022 Jul;16(4):1016-1056. doi: 10.1177/19322968221090279. Epub 2022 May 2.
5
An In Silico Head-to-Head Comparison of the Do-It-Yourself Artificial Pancreas Loop and Bio-Inspired Artificial Pancreas Control Algorithms.
J Diabetes Sci Technol. 2022 Jan;16(1):29-39. doi: 10.1177/19322968211060074. Epub 2021 Dec 3.
6
Performance Analysis of Different Embedded Systems and Open-Source Optimization Packages Towards an Impulsive MPC Artificial Pancreas.
Front Endocrinol (Lausanne). 2021 Apr 26;12:662348. doi: 10.3389/fendo.2021.662348. eCollection 2021.
7
Algorithms for Automated Insulin Delivery: An Overview.
J Diabetes Sci Technol. 2022 Sep;16(5):1228-1238. doi: 10.1177/19322968211008442. Epub 2021 May 6.
8
Embedded Model Predictive Control for a Wearable Artificial Pancreas.
IEEE Trans Control Syst Technol. 2020 Nov;28(6):2600-2607. doi: 10.1109/tcst.2019.2939122. Epub 2019 Sep 18.
9
A New Meal Absorption Model for Artificial Pancreas Systems.
J Diabetes Sci Technol. 2022 Jan;16(1):40-51. doi: 10.1177/1932296821990111. Epub 2021 Feb 28.
10
New Clamp-PID Algorithm for Automated Glucose Clamps Improves Clamp Quality.
J Diabetes Sci Technol. 2022 Mar;16(2):408-414. doi: 10.1177/1932296821991514. Epub 2021 Feb 10.

本文引用的文献

1
Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1621-31. doi: 10.1177/193229681300700623.
3
Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.
Diabetes Technol Ther. 2013 May;15(5):386-400. doi: 10.1089/dia.2012.0283. Epub 2013 Apr 1.
4
Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: randomized clinical trial.
Diabetes Care. 2013 Apr;36(4):838-44. doi: 10.2337/dc12-0816. Epub 2012 Nov 27.
5
Clinical evaluation of a personalized artificial pancreas.
Diabetes Care. 2013 Apr;36(4):801-9. doi: 10.2337/dc12-0948. Epub 2012 Nov 27.
6
Challenges and Recent Progress in the Development of a Closed-loop Artificial Pancreas.
Annu Rev Control. 2012 Dec;36(2):255-266. doi: 10.1016/j.arcontrol.2012.09.007.
7
Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: drawbacks and way forward.
Diabetes Technol Ther. 2013 Jan;15(1):4-12. doi: 10.1089/dia.2012.0185. Epub 2012 Oct 9.
8
A closed-loop artificial pancreas based on risk management.
J Diabetes Sci Technol. 2011 Mar 1;5(2):368-79. doi: 10.1177/193229681100500226.
10
Automated overnight closed-loop glucose control in young children with type 1 diabetes.
Diabetes Technol Ther. 2011 Apr;13(4):419-24. doi: 10.1089/dia.2010.0176. Epub 2011 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验