Grosman Benyamin, Dassau Eyal, Zisser Howard C, Jovanovic Lois, Doyle Francis J
Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
Development of an artificial pancreas based on an automatic closed-loop algorithm that uses a subcutaneous insulin pump and continuous glucose sensor is a goal for biomedical engineering research. However, closing the loop for the artificial pancreas still presents many challenges, including model identification and design of a control algorithm that will keep the type 1 diabetes mellitus subject in normoglycemia for the longest duration and under maximal safety considerations.
An artificial pancreatic beta-cell based on zone model predictive control (zone-MPC) that is tuned automatically has been evaluated on the University of Virginia/University of Padova Food and Drug Administration-accepted metabolic simulator. Zone-MPC is applied when a fixed set point is not defined and the control variable objective can be expressed as a zone. Because euglycemia is usually defined as a range, zone-MPC is a natural control strategy for the artificial pancreatic beta-cell. Clinical data usually include discrete information about insulin delivery and meals, which can be used to generate personalized models. It is argued that mapping clinical insulin administration and meal history through two different second-order transfer functions improves the identification accuracy of these models. Moreover, using mapped insulin as an additional state in zone-MPC enriches information about past control moves, thereby reducing the probability of overdosing. In this study, zone-MPC is tested in three different modes using unannounced and announced meals at their nominal value and with 40% uncertainty. Ten adult in silico subjects were evaluated following a scenario of mixed meals with 75, 75, and 50 grams of carbohydrates (CHOs) consumed at 7 am, 1 pm, and 8 pm, respectively. Zone-MPC results are compared to those of the "optimal" open-loop preadjusted treatment.
Zone-MPC succeeds in maintaining glycemic responses closer to euglycemia compared to the "optimal" open-loop treatment in te three different modes with and without meal announcement. In the face of meal uncertainty, announced zone-MPC presented only marginally improved results over unannounced zone-MPC. When considering user error in CHO estimation and the need to interact with the system, unannounced zone-MPC is an appealing alternative.
Zone-MPC reduces the variability of control moves over fixed set point control without the need to detune the controller. This strategy gives zone-MPC the ability to act quickly when needed and reduce unnecessary control moves in the euglycemic range.
基于自动闭环算法开发人工胰腺,该算法使用皮下胰岛素泵和连续葡萄糖传感器,是生物医学工程研究的一个目标。然而,实现人工胰腺的闭环控制仍面临许多挑战,包括模型识别以及设计一种控制算法,该算法要在最大安全考量下,使1型糖尿病患者保持血糖正常的时间最长。
一种基于自动调整的区域模型预测控制(zone-MPC)的人工胰腺β细胞,已在弗吉尼亚大学/帕多瓦大学食品药品监督管理局认可的代谢模拟器上进行了评估。当未定义固定设定点且控制变量目标可表示为一个区域时,应用区域模型预测控制。由于血糖正常通常定义为一个范围,区域模型预测控制是人工胰腺β细胞的一种自然控制策略。临床数据通常包括有关胰岛素给药和饮食的离散信息,可用于生成个性化模型。有人认为,通过两个不同的二阶传递函数映射临床胰岛素给药和饮食历史可提高这些模型的识别准确性。此外,在区域模型预测控制中使用映射后的胰岛素作为一个额外状态,可丰富有关过去控制动作的信息,从而降低过量给药的可能性。在本研究中,区域模型预测控制在三种不同模式下进行测试,使用未宣布和宣布的餐食,餐食为标称值且有40%的不确定性。按照分别在上午7点、下午1点和晚上8点摄入75克、75克和50克碳水化合物(CHO)的混合餐食场景,对10名成年虚拟受试者进行了评估。将区域模型预测控制的结果与“最优”开环预调整治疗的结果进行比较。
与“最优”开环治疗相比,在有和没有餐食宣布的三种不同模式下,区域模型预测控制成功地使血糖反应更接近血糖正常。面对餐食不确定性时,表示的区域模型预测控制与未表示的区域模型预测控制相比,结果仅略有改善。当考虑到用户在碳水化合物估计方面的误差以及与系统交互的需求时,未表示的区域模型预测控制是一个有吸引力的选择。
区域模型预测控制减少了与固定设定点控制相比控制动作的变异性,而无需对控制器进行失谐。这种策略使区域模型预测控制能够在需要时快速行动,并减少血糖正常范围内不必要的控制动作。