Suppr超能文献

区域模型预测控制:一种将高血糖和低血糖事件降至最低的策略。

Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.

作者信息

Grosman Benyamin, Dassau Eyal, Zisser Howard C, Jovanovic Lois, Doyle Francis J

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA.

出版信息

J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.

Abstract

BACKGROUND

Development of an artificial pancreas based on an automatic closed-loop algorithm that uses a subcutaneous insulin pump and continuous glucose sensor is a goal for biomedical engineering research. However, closing the loop for the artificial pancreas still presents many challenges, including model identification and design of a control algorithm that will keep the type 1 diabetes mellitus subject in normoglycemia for the longest duration and under maximal safety considerations.

METHOD

An artificial pancreatic beta-cell based on zone model predictive control (zone-MPC) that is tuned automatically has been evaluated on the University of Virginia/University of Padova Food and Drug Administration-accepted metabolic simulator. Zone-MPC is applied when a fixed set point is not defined and the control variable objective can be expressed as a zone. Because euglycemia is usually defined as a range, zone-MPC is a natural control strategy for the artificial pancreatic beta-cell. Clinical data usually include discrete information about insulin delivery and meals, which can be used to generate personalized models. It is argued that mapping clinical insulin administration and meal history through two different second-order transfer functions improves the identification accuracy of these models. Moreover, using mapped insulin as an additional state in zone-MPC enriches information about past control moves, thereby reducing the probability of overdosing. In this study, zone-MPC is tested in three different modes using unannounced and announced meals at their nominal value and with 40% uncertainty. Ten adult in silico subjects were evaluated following a scenario of mixed meals with 75, 75, and 50 grams of carbohydrates (CHOs) consumed at 7 am, 1 pm, and 8 pm, respectively. Zone-MPC results are compared to those of the "optimal" open-loop preadjusted treatment.

RESULTS

Zone-MPC succeeds in maintaining glycemic responses closer to euglycemia compared to the "optimal" open-loop treatment in te three different modes with and without meal announcement. In the face of meal uncertainty, announced zone-MPC presented only marginally improved results over unannounced zone-MPC. When considering user error in CHO estimation and the need to interact with the system, unannounced zone-MPC is an appealing alternative.

CONCLUSIONS

Zone-MPC reduces the variability of control moves over fixed set point control without the need to detune the controller. This strategy gives zone-MPC the ability to act quickly when needed and reduce unnecessary control moves in the euglycemic range.

摘要

背景

基于自动闭环算法开发人工胰腺,该算法使用皮下胰岛素泵和连续葡萄糖传感器,是生物医学工程研究的一个目标。然而,实现人工胰腺的闭环控制仍面临许多挑战,包括模型识别以及设计一种控制算法,该算法要在最大安全考量下,使1型糖尿病患者保持血糖正常的时间最长。

方法

一种基于自动调整的区域模型预测控制(zone-MPC)的人工胰腺β细胞,已在弗吉尼亚大学/帕多瓦大学食品药品监督管理局认可的代谢模拟器上进行了评估。当未定义固定设定点且控制变量目标可表示为一个区域时,应用区域模型预测控制。由于血糖正常通常定义为一个范围,区域模型预测控制是人工胰腺β细胞的一种自然控制策略。临床数据通常包括有关胰岛素给药和饮食的离散信息,可用于生成个性化模型。有人认为,通过两个不同的二阶传递函数映射临床胰岛素给药和饮食历史可提高这些模型的识别准确性。此外,在区域模型预测控制中使用映射后的胰岛素作为一个额外状态,可丰富有关过去控制动作的信息,从而降低过量给药的可能性。在本研究中,区域模型预测控制在三种不同模式下进行测试,使用未宣布和宣布的餐食,餐食为标称值且有40%的不确定性。按照分别在上午7点、下午1点和晚上8点摄入75克、75克和50克碳水化合物(CHO)的混合餐食场景,对10名成年虚拟受试者进行了评估。将区域模型预测控制的结果与“最优”开环预调整治疗的结果进行比较。

结果

与“最优”开环治疗相比,在有和没有餐食宣布的三种不同模式下,区域模型预测控制成功地使血糖反应更接近血糖正常。面对餐食不确定性时,表示的区域模型预测控制与未表示的区域模型预测控制相比,结果仅略有改善。当考虑到用户在碳水化合物估计方面的误差以及与系统交互的需求时,未表示的区域模型预测控制是一个有吸引力的选择。

结论

区域模型预测控制减少了与固定设定点控制相比控制动作的变异性,而无需对控制器进行失谐。这种策略使区域模型预测控制能够在需要时快速行动,并减少血糖正常范围内不必要的控制动作。

相似文献

1
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
3
Advanced hybrid artificial pancreas system improves on unannounced meal response - In silico comparison to currently available system.
Comput Methods Programs Biomed. 2021 Nov;211:106401. doi: 10.1016/j.cmpb.2021.106401. Epub 2021 Sep 13.
4
Zone-MPC Automated Insulin Delivery Algorithm Tuned for Pregnancy Complicated by Type 1 Diabetes.
Front Endocrinol (Lausanne). 2022 Mar 22;12:768639. doi: 10.3389/fendo.2021.768639. eCollection 2021.
6
Clinical evaluation of an automated artificial pancreas using zone-model predictive control and health monitoring system.
Diabetes Technol Ther. 2014 Jun;16(6):348-57. doi: 10.1089/dia.2013.0231. Epub 2014 Jan 28.
7
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.
8
Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement.
J Diabetes Sci Technol. 2019 Nov;13(6):1035-1043. doi: 10.1177/1932296819864585. Epub 2019 Jul 24.
9
Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.

引用本文的文献

1
Glucose Rate-of-Change and Insulin-on-Board Jointly Weighted Zone Model Predictive Control.
IEEE Trans Control Syst Technol. 2023 Sep;31(5):2261-2274. doi: 10.1109/tcst.2023.3291573. Epub 2023 Jul 31.
3
Feasibility and Preliminary Safety of Smartphone-Based Automated Insulin Delivery in Adolescents and Children With Type 1 Diabetes.
J Diabetes Sci Technol. 2024 Mar;18(2):363-371. doi: 10.1177/19322968221116384. Epub 2022 Aug 16.
4
Zone-MPC Automated Insulin Delivery Algorithm Tuned for Pregnancy Complicated by Type 1 Diabetes.
Front Endocrinol (Lausanne). 2022 Mar 22;12:768639. doi: 10.3389/fendo.2021.768639. eCollection 2021.
5
Performance Analysis of Different Embedded Systems and Open-Source Optimization Packages Towards an Impulsive MPC Artificial Pancreas.
Front Endocrinol (Lausanne). 2021 Apr 26;12:662348. doi: 10.3389/fendo.2021.662348. eCollection 2021.
6
Embedded Model Predictive Control for a Wearable Artificial Pancreas.
IEEE Trans Control Syst Technol. 2020 Nov;28(6):2600-2607. doi: 10.1109/tcst.2019.2939122. Epub 2019 Sep 18.
7
Design of an online-tuned model based compound controller for a fully automated artificial pancreas.
Med Biol Eng Comput. 2019 Jul;57(7):1437-1449. doi: 10.1007/s11517-019-01972-5. Epub 2019 Mar 20.
8
Tackling problem nonlinearities & delays via asymmetric, state-dependent objective costs in MPC of an artificial pancreas.
IFAC Pap OnLine. 2015;48(23):154-159. doi: 10.1016/j.ifacol.2015.11.276. Epub 2015 Dec 17.
9
Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.
10
Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance.
Automatica (Oxf). 2018 May;91:105-117. doi: 10.1016/j.automatica.2018.01.025. Epub 2018 Mar 20.

本文引用的文献

1
Quest for the artificial pancreas: combining technology with treatment.
IEEE Eng Med Biol Mag. 2010 Mar-Apr;29(2):53-62. doi: 10.1109/MEMB.2009.935711.
2
A bihormonal closed-loop artificial pancreas for type 1 diabetes.
Sci Transl Med. 2010 Apr 14;2(27):27ra27. doi: 10.1126/scitranslmed.3000619.
3
Control to range for diabetes: functionality and modular architecture.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.
6
Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial.
Lancet. 2010 Feb 27;375(9716):743-51. doi: 10.1016/S0140-6736(09)61998-X. Epub 2010 Feb 4.
7
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.
8
Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes.
Physiol Meas. 2004 Aug;25(4):905-20. doi: 10.1088/0967-3334/25/4/010.
9
Closed-loop insulin delivery-the path to physiological glucose control.
Adv Drug Deliv Rev. 2004 Feb 10;56(2):125-44. doi: 10.1016/j.addr.2003.08.011.
10
A model-based algorithm for blood glucose control in type I diabetic patients.
IEEE Trans Biomed Eng. 1999 Feb;46(2):148-57. doi: 10.1109/10.740877.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验