Suppr超能文献

缺氧诱导因子-1α和血管内皮生长因子在氙气、异氟烷和左西孟旦对大鼠心肌细胞晚期预处理中的作用

The role of hypoxia-inducible factor-1α and vascular endothelial growth factor in late-phase preconditioning with xenon, isoflurane and levosimendan in rat cardiomyocytes.

作者信息

Goetzenich Andreas, Hatam Nima, Preuss Stephanie, Moza Ajay, Bleilevens Christian, Roehl Anna B, Autschbach Rüdiger, Bernhagen Jürgen, Stoppe Christian

机构信息

Department of Cardiovascular and Thoracic Surgery, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

Interact Cardiovasc Thorac Surg. 2014 Mar;18(3):321-8. doi: 10.1093/icvts/ivt450. Epub 2013 Dec 18.

Abstract

OBJECTIVES

The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning.

METHODS

Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining.

RESULTS

Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P < 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival.

CONCLUSIONS

We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF.

摘要

目的

晚期预处理的保护作用可由多种刺激触发。遗憾的是,从实验室到临床的转化仍然是一项挑战,因为同时使用的药物或疾病会影响所涉及的复杂信号通路。在一个已建立的原代新生大鼠心肌细胞模型中,我们分析了三种具有临床相关性的不同刺激药物的心脏保护作用。研究了额外使用β受体阻滞剂治疗的效果,因为先前已证明其会对预处理产生负面影响。

方法

在缺氧前24小时,用或不用美托洛尔(0.55μg/ml)预处理的细胞,分别用异氟烷、左西孟旦或氙进行预处理。通过聚合酶链反应和蛋白质印迹分析这些刺激对缺氧诱导因子-1α(HIF-1α)、血管内皮生长因子(VEGF)以及诱导型和内皮型一氧化氮合酶(iNOS/eNOS)和环氧合酶-2(COX-2)的影响。通过缺氧5小时后的台盼蓝细胞计数证明预处理,并通过荧光染色进行确认。

结果

5小时的缺氧使未预处理的对照细胞的存活率降至44±4%。经2×15分钟异氟烷预处理(70±16%;P=0.005)或氙预处理(59±8%;P=0.049)的细胞存活计数显著更高。氙预处理的细胞显示VEGF含量显著升高(0.025±0.010 IDV[与GAPDH相比的积分密度值],而对照组为0.003±0.006 IDV;P=0.0003)。左西孟旦(0.563±0.175 IDV,对照组为0.142±0.042 IDV;P=0.0289)和氙预处理(0.868±0.222 IDV;P<0.0001)均使HIF-1α的蛋白表达增加。氙预处理后可检测到iNOS的mRNA表达显著升高,而其他所选刺激则未出现这种情况。对于所有刺激,β受体阻滞剂治疗均使eNOS mRNA表达受到抑制。在我们的模型中,无论选择何种刺激,β受体阻滞剂治疗对细胞存活均无显著影响。

结论

我们发现晚期预处理的刺激涉及多种不同的途径,不同刺激对这些途径的作用各不相同。与异氟烷治疗不同,氙诱导的预处理不会导致COX-2基因转录增加,但会导致HIF-1α以及随后的VEGF显著增加。

相似文献

3
Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury.
Brain Res. 2008 Dec 15;1245:26-35. doi: 10.1016/j.brainres.2008.09.069. Epub 2008 Oct 7.
4
Isoflurane preconditioning increases survival of rat skin random-pattern flaps by induction of HIF-1α expression.
Cell Physiol Biochem. 2013;31(4-5):579-91. doi: 10.1159/000350078. Epub 2013 Apr 26.
5
The effects of metoprolol on hypoxia- and isoflurane-induced cardiac late-phase preconditioning.
Acta Anaesthesiol Scand. 2011 Aug;55(7):862-9. doi: 10.1111/j.1399-6576.2011.02455.x. Epub 2011 May 25.
8
Up-regulation of hypoxia inducible factor 1alpha by isoflurane in Hep3B cells.
Anesthesiology. 2006 Dec;105(6):1211-9. doi: 10.1097/00000542-200612000-00021.
10
Isoflurane inhibits occludin expression via up-regulation of hypoxia-inducible factor 1α.
Brain Res. 2014 May 8;1562:1-10. doi: 10.1016/j.brainres.2014.03.025. Epub 2014 Mar 22.

引用本文的文献

1
Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies.
Basic Res Cardiol. 2024 Aug;119(4):509-544. doi: 10.1007/s00395-024-01061-1. Epub 2024 Jun 15.
3
Proteomics of protein trafficking by in vivo tissue-specific labeling.
Nat Commun. 2021 Apr 22;12(1):2382. doi: 10.1038/s41467-021-22599-x.
5
Mechanisms of cardioprotection via modulation of the immune response.
Curr Opin Pharmacol. 2017 Apr;33:6-11. doi: 10.1016/j.coph.2017.03.002. Epub 2017 Apr 4.
7
Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning.
Int J Mol Sci. 2016 Jul 19;17(7):1159. doi: 10.3390/ijms17071159.
8
[Cardioprotection in cardiac surgical patients : Everything good comes from the heart].
Anaesthesist. 2016 Mar;65(3):169-82. doi: 10.1007/s00101-016-0141-z.
9
Characterization of Gene Expression in the Rat Brainstem After Neonatal Hypoxic-Ischemic Injury and Antioxidant Treatment.
Mol Neurobiol. 2017 Mar;54(2):1129-1143. doi: 10.1007/s12035-016-9724-6. Epub 2016 Jan 25.

本文引用的文献

1
Nitric oxide has no obligatory role in isoflurane late preconditioning against myocardial stunning.
Life Sci. 2012 Dec 10;91(23-24):1201-6. doi: 10.1016/j.lfs.2012.09.016. Epub 2012 Oct 5.
3
The effects of metoprolol on hypoxia- and isoflurane-induced cardiac late-phase preconditioning.
Acta Anaesthesiol Scand. 2011 Aug;55(7):862-9. doi: 10.1111/j.1399-6576.2011.02455.x. Epub 2011 May 25.
5
Role of iNOS and peroxynitrite-matrix metalloproteinase-2 signaling in myocardial late preconditioning in rats.
Am J Physiol Heart Circ Physiol. 2010 Aug;299(2):H512-8. doi: 10.1152/ajpheart.00052.2010. Epub 2010 Jun 11.
6
The second window of preconditioning (SWOP) where are we now?
Cardiovasc Drugs Ther. 2010 Jun;24(3):235-54. doi: 10.1007/s10557-010-6237-9.
7
Development of a drug screening platform based on engineered heart tissue.
Circ Res. 2010 Jul 9;107(1):35-44. doi: 10.1161/CIRCRESAHA.109.211458. Epub 2010 May 6.
8
Hypoxia-inducible factor 1 and related gene products in anaesthetic-induced preconditioning.
Eur J Anaesthesiol. 2009 Mar;26(3):201-6. doi: 10.1097/eja.0b013e3283212cbb.
9
Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation.
J Am Soc Nephrol. 2009 Apr;20(4):713-20. doi: 10.1681/ASN.2008070712. Epub 2009 Jan 14.
10
Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review.
J Surg Res. 2008 Dec;150(2):304-30. doi: 10.1016/j.jss.2007.12.747. Epub 2008 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验