Richard Katharina, Mann Barbara J, Stocker Lenea, Barry Eileen M, Qin Aiping, Cole Leah E, Hurley Matthew T, Ernst Robert K, Michalek Suzanne M, Stein Daniel C, Deshong Philip, Vogel Stefanie N
Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.
Clin Vaccine Immunol. 2014 Feb;21(2):212-26. doi: 10.1128/CVI.00738-13. Epub 2013 Dec 18.
Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with "bare" vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens.
土拉弗朗西斯菌是一种革兰氏阴性、具有免疫逃避能力的球杆菌,可导致人类和动物患兔热病。目前尚未研发出一种安全有效的、能抵御多种土拉弗朗西斯菌菌株的疫苗。在本研究中,我们测试了一种使用人工病原体的新型疫苗方法,即由阴阳离子表面活性剂囊泡制成的合成纳米颗粒,这些囊泡通过掺入土拉弗朗西斯菌B型活疫苗株(土拉弗朗西斯菌LVS [LVS-V])或土拉弗朗西斯菌A型舒S4株(土拉弗朗西斯菌舒S4 [舒S4-V])成分进行功能化修饰。用不表达土拉弗朗西斯菌成分的“空白”囊泡免疫C57BL/6小鼠,可部分抵御土拉弗朗西斯菌LVS,推测是通过激活先天免疫反应实现的,但它无法抵御土拉弗朗西斯菌舒S4株。相比之下,用LVS-V免疫可使小鼠完全抵御腹腔内(i.p.)土拉弗朗西斯菌LVS攻击,而用LVS-V或舒S4-V免疫小鼠可部分保护C57BL/6小鼠抵御鼻内(i.n.)土拉弗朗西斯菌舒S4攻击,并显著延长非存活小鼠的平均死亡时间,尤其是在鼻内和异源(即腹腔内/鼻内)免疫途径之后。LVS-V免疫而非空白囊泡免疫可诱导产生高水平的针对非脂多糖(non-LPS)表位的IgG,这些IgG在土拉弗朗西斯菌LVS攻击后增加,并显著增加早期细胞因子的产生。来自LVS-V免疫小鼠的抗血清可对土拉弗朗西斯菌LVS攻击提供被动保护。总之,这些数据表明功能化的阴阳离子表面活性剂囊泡是开发安全有效的土拉弗朗西斯菌亚单位疫苗的重要且新颖的工具,可能也适用于其他病原体。