Suppr超能文献

LysM 结构域的协同结合决定了细菌内切蛋白酶蛋白的碳水化合物亲和力。

Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein.

机构信息

Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Denmark.

出版信息

FEBS J. 2014 Feb;281(4):1196-208. doi: 10.1111/febs.12698. Epub 2014 Jan 13.

Abstract

Cellulose, chitin and peptidoglycan are major long-chain carbohydrates in living organisms, and constitute a substantial fraction of the biomass. Characterization of the biochemical basis of dynamic changes and degradation of these β,1-4-linked carbohydrates is therefore important for both functional studies of biological polymers and biotechnology. Here, we investigated the functional role of multiplicity of the carbohydrate-binding lysin motif (LysM) domain that is found in proteins involved in bacterial peptidoglycan synthesis and remodelling. The Bacillus subtilis peptidoglycan-hydrolysing NlpC/P60 D,L-endopeptidase, cell wall-lytic enzyme associated with cell separation, possesses four LysM domains. The contribution of each LysM domain was determined by direct carbohydrate-binding studies in aqueous solution with microscale thermophoresis. We found that bacterial LysM domains have affinity for N-acetylglucosamine (GlcNac) polymers in the lower-micromolar range. Moreover, we demonstrated that a single LysM domain is able to bind carbohydrate ligands, and that LysM domains act additively to increase the binding affinity. Our study reveals that affinity for GlcNAc polymers correlates with the chain length of the carbohydrate, and suggests that binding of long carbohydrates is mediated by LysM domain cooperativity. We also show that bacterial LysM domains, in contrast to plant LysM domains, do not discriminate between GlcNAc polymers, and recognize both peptidoglycan fragments and chitin polymers with similar affinity. Finally, an Ala replacement study suggested that the carbohydrate-binding site in LysM-containing proteins is conserved across phyla.

摘要

纤维素、几丁质和肽聚糖是生物体内的主要长链碳水化合物,构成了生物量的重要组成部分。因此,对这些β,1-4 键连接的碳水化合物的动态变化和降解的生化基础进行特征描述,对于生物聚合物的功能研究和生物技术都很重要。在这里,我们研究了在参与细菌肽聚糖合成和重塑的蛋白质中发现的多重碳水化合物结合赖氨酸基序(LysM)结构域的功能作用。枯草芽孢杆菌肽聚糖水解 NlpC/P60 D,L-内肽酶,与细胞分离相关的细胞壁裂解酶,具有四个 LysM 结构域。通过在水溶液中使用微尺度热泳直接进行碳水化合物结合研究来确定每个 LysM 结构域的贡献。我们发现细菌 LysM 结构域对 N-乙酰葡萄糖胺(GlcNac)聚合物的亲和力在较低的微摩尔范围内。此外,我们证明了单个 LysM 结构域能够结合碳水化合物配体,并且 LysM 结构域的作用是增加结合亲和力。我们的研究表明,对 GlcNAc 聚合物的亲和力与碳水化合物的链长相关,并且表明长碳水化合物的结合是通过 LysM 结构域的协同作用介导的。我们还表明,与植物 LysM 结构域相反,细菌 LysM 结构域不会区分 GlcNAc 聚合物,并且以相似的亲和力识别肽聚糖片段和几丁质聚合物。最后,Ala 替换研究表明,含有 LysM 的蛋白质中的碳水化合物结合位点在门之间是保守的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验