Suppr超能文献

基于印刷电路板平台上的纳米结构氧化锌薄膜的超灵敏电化学生物免疫传感器。

Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms.

机构信息

Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, EC 39, Richardson, TX 75080, USA.

Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, EC 39, Richardson, TX 75080, USA.

出版信息

Biosens Bioelectron. 2014 May 15;55:7-13. doi: 10.1016/j.bios.2013.11.022. Epub 2013 Nov 28.

Abstract

This study demonstrates the development of nanotextured zinc oxide (ZnO) thin films sputter deposited on printed circuit boards (PCB) to enhance the capability in detecting low concentrations of the protein troponin-T. The presence of this particular biomarker in the bloodstream is a direct indicator of current and/or future risk of various forms of cardiovascular diseases. Electrical transduction through impedance spectroscopy was used to detect troponin-T functionalized immunoassays on nanotextured ZnO surfaces. Calibration of the immunoassay was performed by measuring the impedance changes resulting from the binding of increasing concentrations of troponin-T to the immobilized antibodies on the ZnO surface in (i) phosphate buffered saline (PBS) and (ii) human serum. The limit of detection achieved using this platform was 10 fg/mL and 100 fg/mL in PBS and human serum, respectively. Enhanced detection of troponin-T was found to correlate to the oxygen vacancies in the ZnO thin film. PCB was chosen as the substrate for ease of integration with microelectronic device manufacturing.

摘要

本研究展示了在印刷电路板(PCB)上溅射沉积纳米结构氧化锌(ZnO)薄膜的发展,以提高对低浓度肌钙蛋白-T 的检测能力。该生物标志物在血液中的存在是当前和/或未来各种形式心血管疾病风险的直接指标。通过阻抗谱进行的电转导用于检测纳米结构 ZnO 表面上的肌钙蛋白-T 功能化免疫分析。通过测量由于与固定在 ZnO 表面上的抗体结合而导致的阻抗变化来对免疫分析进行校准,其中(i)磷酸盐缓冲盐水(PBS)和(ii)人血清中,troponin-T 的浓度不断增加。使用该平台在 PBS 和人血清中的检测限分别达到 10 fg/mL 和 100 fg/mL。发现 troponin-T 的增强检测与 ZnO 薄膜中的氧空位有关。选择 PCB 作为基底,以便于与微电子器件制造集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验