Suppr超能文献

基于场景的行人检测在静态视频监控中的应用。

Scene-specific pedestrian detection for static video surveillance.

机构信息

The Chinese University of Hong Kong, Hong Kong.

the Chinese University of Hong Kong, Hong Kong.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Feb;36(2):361-74. doi: 10.1109/TPAMI.2013.124.

Abstract

The performance of a generic pedestrian detector may drop significantly when it is applied to a specific scene due to the mismatch between the source training set and samples from the target scene. We propose a new approach of automatically transferring a generic pedestrian detector to a scene-specific detector in static video surveillance without manually labeling samples from the target scene. The proposed transfer learning framework consists of four steps. 1) Through exploring the indegrees from target samples to source samples on a visual affinity graph, the source samples are weighted to match the distribution of target samples. 2) It explores a set of context cues to automatically select samples from the target scene, predicts their labels, and computes confidence scores to guide transfer learning. 3) The confidence scores propagate among target samples according to their underlying visual structures. 4) Target samples with higher confidence scores have larger influence on training scene-specific detectors. All these considerations are formulated under a single objective function called confidence-encoded SVM, which avoids hard thresholding on confidence scores. During test, only the appearance-based detector is used without context cues. The effectiveness is demonstrated through experiments on two video surveillance data sets. Compared with a generic detector, it improves the detection rates by 48 and 36 percent at one false positive per image (FPPI) on the two data sets, respectively. The training process converges after one or two iterations on the data sets in experiments.

摘要

由于源训练集与目标场景样本之间的不匹配,通用行人检测器在应用于特定场景时性能可能会显著下降。我们提出了一种新的方法,可以在静态视频监控中无需手动标记目标场景样本的情况下,将通用行人检测器自动转换为特定于场景的检测器。所提出的迁移学习框架由四个步骤组成。1)通过在视觉相似性图上探索目标样本到源样本的入度,对源样本进行加权以匹配目标样本的分布。2)它探索了一组上下文线索,自动从目标场景中选择样本,预测它们的标签,并计算置信度得分以指导迁移学习。3)置信度得分根据目标样本的潜在视觉结构在目标样本之间传播。4)置信度得分较高的目标样本对训练特定于场景的检测器的影响更大。所有这些考虑都在一个称为置信编码 SVM 的单一目标函数下进行了公式化,该函数避免了对置信度得分进行硬阈值处理。在测试期间,仅使用基于外观的检测器,而无需上下文线索。通过在两个视频监控数据集上的实验证明了其有效性。与通用检测器相比,它分别在两个数据集上以每幅图像一个误报(FPPI)提高了 48%和 36%的检测率。在实验中,该数据集在经过一到两次迭代后,训练过程就会收敛。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验