Suppr超能文献

利用检测迁移和自相关最大化的在线自动参数化来增强多摄像机人像检测。

Enhancing Multi-Camera People Detection by Online Automatic Parametrization Using Detection Transfer and Self-Correlation Maximization .

机构信息

Video Processing and Understanding Laboratory (VPULab), Universidad Autónoma de Madrid, 28049 Madrid, Spain.

出版信息

Sensors (Basel). 2018 Dec 11;18(12):4385. doi: 10.3390/s18124385.

Abstract

Finding optimal parametrizations for people detectors is a complicated task due to the large number of parameters and the high variability of application scenarios. In this paper, we propose a framework to adapt and improve any detector automatically in multi-camera scenarios where people are observed from various viewpoints. By accurately transferring detector results between camera viewpoints and by self-correlating these transferred results, the best configuration (in this paper, the detection threshold) for each detector-viewpoint pair is identified online without requiring any additional manually-labeled ground truth apart from the offline training of the detection model. Such a configuration consists of establishing the confidence detection threshold present in every people detector, which is a critical parameter affecting detection performance. The experimental results demonstrate that the proposed framework improves the performance of four different state-of-the-art detectors (DPM , ACF, faster R-CNN, and YOLO9000) whose Optimal Fixed Thresholds (OFTs) have been determined and fixed during training time using standard datasets.

摘要

由于参数数量多且应用场景变化大,找到最佳的人体检测器参数配置是一项复杂的任务。在本文中,我们提出了一种框架,能够在多摄像机场景中自动适应和改进任何检测器,这些场景中人们从不同的视角进行观察。通过在摄像机视角之间准确地传输检测器结果,并通过对这些传输结果进行自相关,我们可以在线识别每个检测器-摄像机视角对的最佳配置(在本文中,即检测阈值),而无需除检测模型离线训练之外的任何额外的手动标记的真实数据。这样的配置包括建立每个人体检测器中存在的置信度检测阈值,这是影响检测性能的关键参数。实验结果表明,所提出的框架提高了四种不同的最先进的检测器(DPM、ACF、faster R-CNN 和 YOLO9000)的性能,这些检测器的最佳固定阈值(OFT)在训练时间内使用标准数据集进行了确定和固定。

相似文献

4
Cascade R-CNN: High Quality Object Detection and Instance Segmentation.级联 R-CNN:高质量目标检测和实例分割。
IEEE Trans Pattern Anal Mach Intell. 2021 May;43(5):1483-1498. doi: 10.1109/TPAMI.2019.2956516. Epub 2021 Apr 1.
6
Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera.基于单目未标定相机的在线多人目标跟踪与检测。
IEEE Trans Pattern Anal Mach Intell. 2011 Sep;33(9):1820-33. doi: 10.1109/TPAMI.2010.232. Epub 2010 Dec 23.
8
MonoEF: Extrinsic Parameter Free Monocular 3D Object Detection.单目外部参数自由的3D目标检测(MonoEF)
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):10114-10128. doi: 10.1109/TPAMI.2021.3136899. Epub 2022 Nov 7.

本文引用的文献

1
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
2
Fast Feature Pyramids for Object Detection.快速目标检测特征金字塔。
IEEE Trans Pattern Anal Mach Intell. 2014 Aug;36(8):1532-45. doi: 10.1109/TPAMI.2014.2300479.
3
Scene-specific pedestrian detection for static video surveillance.基于场景的行人检测在静态视频监控中的应用。
IEEE Trans Pattern Anal Mach Intell. 2014 Feb;36(2):361-74. doi: 10.1109/TPAMI.2013.124.
4
Continuous energy minimization for multitarget tracking.多目标跟踪的连续能量最小化。
IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):58-72. doi: 10.1109/TPAMI.2013.103.
5
Object detection with discriminatively trained part-based models.基于判别式训练的部件模型的目标检测。
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45. doi: 10.1109/TPAMI.2009.167.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验