Suppr超能文献

使用高频超声成像分析小鼠跟腱中的胶原蛋白组织。

Analysis of collagen organization in mouse achilles tendon using high-frequency ultrasound imaging.

作者信息

Riggin Corinne N, Sarver Joseph J, Freedman Benjamin R, Thomas Stephen J, Soslowsky Louis J

出版信息

J Biomech Eng. 2014 Feb;136(2):021029. doi: 10.1115/1.4026285.

Abstract

Achilles tendon ruptures are traumatic injuries, and techniques for assessing repair outcomes rely on patient-based measures of pain and function, which do not directly assess tendon healing. Consequently, there is a need for a quantitative, in vivo measure of tendon properties. Therefore, the purpose of this study was to validate ultrasound imaging for evaluating collagen organization in tendons. In this study, we compared our novel, high-frequency ultrasound (HFUS) imaging and analysis method to a standard measure of collagen organization, crossed polarizer (CP) imaging. Eighteen mouse Achilles tendons were harvested and placed into a testing fixture where HFUS and CP imaging could be performed simultaneously in a controlled loading environment. Two experiments were conducted: (1) effect of loading on collagen alignment and (2) effect of an excisional injury on collagen alignment. As expected, it was found that both the HFUS and CP methods could reliably detect an increase in alignment with increasing load, as well as a decrease in alignment with injury. This HFUS method demonstrates that structural measures of collagen organization in tendon can be determined through ultrasound imaging. This experiment also provides a mechanistic evaluation of tissue structure that could potentially be used to develop a targeted approach to aid in rehabilitation or monitor return to activity after tendon injury.

摘要

跟腱断裂是创伤性损伤,评估修复效果的技术依赖于基于患者的疼痛和功能测量,而这些并不能直接评估肌腱愈合情况。因此,需要一种定量的、体内测量肌腱特性的方法。所以,本研究的目的是验证超声成像在评估肌腱中胶原组织方面的作用。在本研究中,我们将我们新颖的高频超声(HFUS)成像及分析方法与胶原组织的标准测量方法——交叉偏振器(CP)成像进行了比较。采集了18只小鼠的跟腱,并将其放入一个测试装置中,在可控的加载环境下能够同时进行HFUS和CP成像。进行了两个实验:(1)加载对胶原排列的影响和(2)切除性损伤对胶原排列的影响。正如预期的那样,发现HFUS和CP方法都能可靠地检测到随着负荷增加排列增加,以及随着损伤排列减少。这种HFUS方法表明,可以通过超声成像确定肌腱中胶原组织的结构测量。该实验还提供了对组织结构的机制性评估,这可能潜在地用于开发一种有针对性的方法,以帮助肌腱损伤后的康复或监测恢复活动情况。

相似文献

4
Ultrasonic assessment of extracellular matrix content in healing Achilles tendon.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):694-702. doi: 10.1109/TUFFC.2012.2247.
6
Realtime Achilles Ultrasound Thompson (RAUT) Test for the Evaluation and Diagnosis of Acute Achilles Tendon Ruptures.
Foot Ankle Int. 2017 Jan;38(1):36-40. doi: 10.1177/1071100716669983. Epub 2016 Oct 1.
7
Sonoelastography can be used to monitor the restoration of Achilles tendon elasticity after injury.
Ultraschall Med. 2012 Dec;33(6):581-6. doi: 10.1055/s-0032-1325526. Epub 2012 Dec 7.
9
Ultrasound-Based Tendon Micromorphology Predicts Mechanical Characteristics of Degenerated Tendons.
Ultrasound Med Biol. 2016 Mar;42(3):664-73. doi: 10.1016/j.ultrasmedbio.2015.11.013. Epub 2015 Dec 21.
10
Post-operative MRI and US appearance of the Achilles tendons.
J Ultrasound. 2020 Sep;23(3):387-395. doi: 10.1007/s40477-020-00479-2. Epub 2020 Jun 1.

引用本文的文献

1
Chronic Adaptation of the Coracohumeral Space and Subscapularis Tendon in Professional Baseball Pitchers.
Sports Health. 2024 Aug 14:19417381241270359. doi: 10.1177/19417381241270359.
4
Aging and injury affect nuclear shape heterogeneity in tendon.
J Orthop Res. 2023 Oct;41(10):2186-2194. doi: 10.1002/jor.25649. Epub 2023 Jul 2.
5
Increasing Vascular Response to Injury Improves Tendon Early Healing Outcome in Aged Rats.
Ann Biomed Eng. 2022 May;50(5):587-600. doi: 10.1007/s10439-022-02948-7. Epub 2022 Mar 18.
6
Aging and matrix viscoelasticity affect multiscale tendon properties and tendon derived cell behavior.
Acta Biomater. 2022 Apr 15;143:63-71. doi: 10.1016/j.actbio.2022.03.006. Epub 2022 Mar 9.
7
Scaffold Geometry-Imposed Anisotropic Mechanical Loading Guides the Evolution of the Mechanical State of Engineered Cardiovascular Tissues .
Front Bioeng Biotechnol. 2022 Feb 16;10:796452. doi: 10.3389/fbioe.2022.796452. eCollection 2022.
8
Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity.
Nat Biomed Eng. 2022 Oct;6(10):1167-1179. doi: 10.1038/s41551-021-00810-0. Epub 2022 Jan 3.
9
Nonsurgical treatment reduces tendon inflammation and elevates tendon markers in early healing.
J Orthop Res. 2022 Oct;40(10):2308-2319. doi: 10.1002/jor.25251. Epub 2022 Jan 7.
10
Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response.
Cancer Drug Resist. 2021;4(2):382-413. doi: 10.20517/cdr.2020.94. Epub 2021 Jun 19.

本文引用的文献

1
Tendon extracellular matrix damage detection and quantification using automated edge detection analysis.
J Biomech. 2013 Nov 15;46(16):2844-7. doi: 10.1016/j.jbiomech.2013.09.002. Epub 2013 Sep 18.
2
Role of moderate exercising on Achilles tendon collagen crimping patterns and proteoglycans.
Connect Tissue Res. 2013;54(4-5):267-74. doi: 10.3109/03008207.2013.807808. Epub 2013 Aug 26.
3
Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study.
J Ultrasound Med. 2013 Mar;32(3):449-55. doi: 10.7863/jum.2013.32.3.449.
4
Patellar tendon morphology in volleyball athletes with and without patellar tendinopathy.
Scand J Med Sci Sports. 2013 Mar;23(2):e81-8. doi: 10.1111/sms.12021. Epub 2012 Dec 17.
6
Temporal healing in rat achilles tendon: ultrasound correlations.
Ann Biomed Eng. 2013 Mar;41(3):477-87. doi: 10.1007/s10439-012-0689-y. Epub 2012 Nov 13.
9
Polarization-resolved second-harmonic generation in tendon upon mechanical stretching.
Biophys J. 2012 May 2;102(9):2220-9. doi: 10.1016/j.bpj.2012.03.068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验