Suppr超能文献

具有公共使用数据中地理模拟应用的多重收缩多项概率单位模型。

Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Data.

作者信息

Burgette Lane F, Reiter Jerome P

机构信息

RAND Corporation.

Duke University, Department of Statistical Science.

出版信息

Bayesian Anal. 2013 Jun 1;8(2). doi: 10.1214/13-BA816.

Abstract

Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.

摘要

具有多个水平的多项结果建模可能具有挑战性。随着样本量的增加,信息通常积累缓慢,但参数空间会随着额外的协变量迅速扩展。像在连续或二元响应变量模型中经常做的那样,将所有回归参数向零收缩并不令人满意,因为在多项模型中设置参数等于零并不一定意味着“无效应”。我们提出一种基于贝叶斯多项概率单位(MNP)模型和回归参数的多重收缩先验分布来对具有多个水平的多项结果进行建模的方法。先验分布鼓励MNP回归参数向多个学习到的位置收缩,从而大幅降低参数空间的维度。使用模拟数据,我们将该模型的预测性能与最近提出的另外两种用于大型多项模型的方法进行比较。结果表明,完全贝叶斯多重收缩方法可以优于其他方法。我们将多重收缩MNP应用于模拟区域标识符(例如人口普查区指标)的替换值,以保护公共使用数据集中的数据机密性。

相似文献

2
Bayesian semiparametric multiple shrinkage.贝叶斯半参数多重收缩法
Biometrics. 2010 Jun;66(2):455-62. doi: 10.1111/j.1541-0420.2009.01275.x. Epub 2009 Jun 8.
9
Functional Horseshoe Priors for Subspace Shrinkage.用于子空间收缩的函数马蹄形先验
J Am Stat Assoc. 2020;115(532):1784-1797. doi: 10.1080/01621459.2019.1654875. Epub 2019 Sep 17.
10
Estimating Identification Disclosure Risk Using Mixed Membership Models.使用混合成员模型估计身份披露风险。
J Am Stat Assoc. 2012 Dec 1;107(500):1385-1394. doi: 10.1080/01621459.2012.710508.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验