Suppr超能文献

利用神经元的隔室化和表面微图案培养进行轴突运输的定量分析。

Quantitative analysis of axonal transport by using compartmentalized and surface micropatterned culture of neurons.

出版信息

ACS Chem Neurosci. 2012 Jun 20;3(6):433-8. doi: 10.1021/cn3000026.

Abstract

Mitochondria, synaptic vesicles, and other cytoplasmic constituents have to travel long distance along the axons from cell bodies to nerve terminals. Interruption of this axonal transport may contribute to many neurodegenerative diseases including Alzheimer's disease (AD). It has been recently shown that exposure of cultured neurons to β-amyloid (Aβ) resulted in severe impairment of mitochondrial transport. This Letter describes an integrated microfluidic platform that establishes surface patterned and compartmentalized culture of neurons for studying the effect of Aβ on mitochondria trafficking in full length of axons. We have successfully quantified the trafficking of fluorescently labeled mitochondria in distal and proximal axons using image processing. Selective treatment of Aβ in the somal or axonal compartments resulted in considerable decrease in mitochondria movement in a location dependent manner such that mitochondria trafficking slowed down more significantly proximal to the location of Aβ exposure. Furthermore, this result suggests a promising application of microfluidic technology for investigating the dysfunction of axonal transport related to neurodegenerative diseases.

摘要

线粒体、突触小泡和其他细胞质成分必须沿着轴突从细胞体长途运输到神经末梢。这种轴突运输的中断可能导致许多神经退行性疾病,包括阿尔茨海默病(AD)。最近的研究表明,培养的神经元暴露于β-淀粉样蛋白(Aβ)会导致线粒体运输严重受损。这封信描述了一个集成的微流控平台,该平台建立了神经元的表面图案化和分隔培养,用于研究 Aβ对全长轴突中线粒体运输的影响。我们已经成功地使用图像处理量化了荧光标记的线粒体在远端和近端轴突中的运输。在体部或轴突隔室中选择性地处理 Aβ会导致线粒体运动以位置依赖的方式显著减少,使得线粒体运输在 Aβ暴露位置附近更显著地减慢。此外,这一结果表明微流控技术在研究与神经退行性疾病相关的轴突运输功能障碍方面具有广阔的应用前景。

相似文献

2
Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons.
Biochim Biophys Acta. 2011 Apr;1812(4):507-13. doi: 10.1016/j.bbadis.2011.01.007. Epub 2011 Jan 15.
3
Regulation of Synaptic Amyloid-β Generation through BACE1 Retrograde Transport in a Mouse Model of Alzheimer's Disease.
J Neurosci. 2017 Mar 8;37(10):2639-2655. doi: 10.1523/JNEUROSCI.2851-16.2017. Epub 2017 Feb 3.
4
Imaging organelle transport in primary hippocampal neurons treated with amyloid-β oligomers.
Methods Cell Biol. 2016;131:425-51. doi: 10.1016/bs.mcb.2015.06.012. Epub 2015 Sep 2.
5
Amyloid beta-mediated KIF5A deficiency disrupts anterograde axonal mitochondrial movement.
Neurobiol Dis. 2019 Jul;127:410-418. doi: 10.1016/j.nbd.2019.03.021. Epub 2019 Mar 25.
6
A microdevice platform for visualizing mitochondrial transport in aligned dopaminergic axons.
J Neurosci Methods. 2012 Jul 30;209(1):35-9. doi: 10.1016/j.jneumeth.2012.05.021. Epub 2012 May 28.
7
Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
J Neurosci. 2016 Sep 14;36(37):9647-58. doi: 10.1523/JNEUROSCI.1899-16.2016.
9
Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer's neurons.
PLoS One. 2013;8(1):e54914. doi: 10.1371/journal.pone.0054914. Epub 2013 Jan 31.
10
β-Amyloid impairs axonal BDNF retrograde trafficking.
Neurobiol Aging. 2011 May;32(5):821-33. doi: 10.1016/j.neurobiolaging.2009.05.012. Epub 2009 Jun 21.

引用本文的文献

1
Microfluidic platforms for single neuron analysis.
Mater Today Bio. 2022 Feb 16;13:100222. doi: 10.1016/j.mtbio.2022.100222. eCollection 2022 Jan.
3
Three-Dimensional Models of the Human Brain Development and Diseases.
Adv Healthc Mater. 2018 Jan;7(1). doi: 10.1002/adhm.201700723. Epub 2017 Aug 28.
4
Compartmentalized Platforms for Neuro-Pharmacological Research.
Curr Neuropharmacol. 2016;14(1):72-86. doi: 10.2174/1570159x13666150516000957.
5
Microtechnologies for studying the role of mechanics in axon growth and guidance.
Front Cell Neurosci. 2015 Jul 27;9:282. doi: 10.3389/fncel.2015.00282. eCollection 2015.
7
Advances in high-throughput single-cell microtechnologies.
Curr Opin Biotechnol. 2014 Feb;25:114-23. doi: 10.1016/j.copbio.2013.09.005. Epub 2013 Dec 18.
8
Microfluidic platforms for mechanobiology.
Lab Chip. 2013 Jun 21;13(12):2252-67. doi: 10.1039/c3lc41393d. Epub 2013 May 7.
10
Microtechnologies to fuel neurobiological research with nanometer precision.
J Nanobiotechnology. 2013 Apr 10;11:11. doi: 10.1186/1477-3155-11-11.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Single-molecule imaging of NGF axonal transport in microfluidic devices.
Lab Chip. 2010 Oct 7;10(19):2566-73. doi: 10.1039/c003385e. Epub 2010 Jul 9.
3
Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices.
Lab Chip. 2010 Jun 21;10(12):1525-35. doi: 10.1039/c001552k. Epub 2010 Apr 13.
4
Axonal transport defects in neurodegenerative diseases.
J Neurosci. 2009 Oct 14;29(41):12776-86. doi: 10.1523/JNEUROSCI.3463-09.2009.
5
Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport.
J Neurochem. 2009 Oct;111(2):417-27. doi: 10.1111/j.1471-4159.2009.06316.x. Epub 2009 Aug 3.
6
Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein.
Nat Cell Biol. 2009 Aug;11(8):1024-30. doi: 10.1038/ncb1916. Epub 2009 Jul 20.
7
β-Amyloid impairs axonal BDNF retrograde trafficking.
Neurobiol Aging. 2011 May;32(5):821-33. doi: 10.1016/j.neurobiolaging.2009.05.012. Epub 2009 Jun 21.
8
Axonal mRNA in uninjured and regenerating cortical mammalian axons.
J Neurosci. 2009 Apr 15;29(15):4697-707. doi: 10.1523/JNEUROSCI.6130-08.2009.
10
Microfluidic culture platform for neuroscience research.
Nat Protoc. 2006;1(4):2128-36. doi: 10.1038/nprot.2006.316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验