Suppr超能文献

自组织映射作为探索时空扩散模式的一种方法。

Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns.

机构信息

Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands.

出版信息

Int J Health Geogr. 2013 Dec 23;12:60. doi: 10.1186/1476-072X-12-60.

Abstract

BACKGROUND

Self-organizing maps (SOMs) have now been applied for a number of years to identify patterns in large datasets; yet, their application in the spatiotemporal domain has been lagging. Here, we demonstrate how spatialtemporal disease diffusion patterns can be analysed using SOMs and Sammon's projection.

METHODS

SOMs were applied to identify synchrony between spatial locations, to group epidemic waves based on similarity of diffusion pattern and to construct sequence of maps of synoptic states. The Sammon's projection was used to created diffusion trajectories from the SOM output. These methods were demonstrated with a dataset that reports Measles outbreaks that took place in Iceland in the period 1946-1970. The dataset reports the number of Measles cases per month in 50 medical districts.

RESULTS

Both stable and incidental synchronisation between medical districts were identified as well as two distinct groups of epidemic waves, a uniformly structured fast developing group and a multiform slow developing group. Diffusion trajectories for the fast developing group indicate a typical diffusion pattern from Reykjavik to the northern and eastern parts of the island. For the other group, diffusion trajectories are heterogeneous, deviating from the Reykjavik pattern.

CONCLUSIONS

This study demonstrates the applicability of SOMs (combined with Sammon's Projection and GIS) in spatiotemporal diffusion analyses. It shows how to visualise diffusion patterns to identify (dis)similarity between individual waves and between individual waves and an overall time-series performing integrated analysis of synchrony and diffusion trajectories.

摘要

背景

自组织映射 (SOM) 现已应用于识别大数据集中的模式多年;然而,它们在时空领域的应用一直滞后。在这里,我们展示了如何使用 SOM 和 Sammon 投影来分析时空疾病扩散模式。

方法

SOM 用于识别空间位置之间的同步性,根据扩散模式的相似性对流行波进行分组,并构建天气图序列的同步状态。Sammon 投影用于从 SOM 输出创建扩散轨迹。这些方法是用报告 1946-1970 年期间冰岛麻疹暴发的数据进行演示的。该数据集报告了 50 个医疗区每个月的麻疹病例数。

结果

确定了医疗区之间的稳定和偶然同步,以及两组不同的流行波,一组是结构均匀、快速发展的组,另一组是多样、缓慢发展的组。快速发展组的扩散轨迹表明,从雷克雅未克到该岛的北部和东部有一个典型的扩散模式。对于另一组,扩散轨迹是异构的,偏离雷克雅未克模式。

结论

本研究证明了 SOM(结合 Sammon 投影和 GIS)在时空扩散分析中的适用性。它展示了如何可视化扩散模式,以识别个别波之间以及个别波与整个时间序列之间的(不)相似性,从而执行同步和扩散轨迹的综合分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06f8/3882328/051c63c2e8ed/1476-072X-12-60-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验