Suppr超能文献

基于矩阵伪逆的生物医学预测新型人工神经网络方法。

A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.

机构信息

Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206-3701, USA.

出版信息

J Biomed Inform. 2014 Apr;48:114-21. doi: 10.1016/j.jbi.2013.12.009. Epub 2013 Dec 18.

Abstract

Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well.

摘要

基于临床和全基因组数据的生物医学预测在疾病诊断和分类中变得越来越重要。为了解决医学应用中有效的预测问题,以提高临床护理水平,我们开发了一种基于矩阵伪逆(MPI)的新型人工神经网络(ANN)方法。MPI-ANN 被构建为一个具有三个层(即输入层、隐藏层和输出层)的前馈神经网络,并且在没有冗长的学习迭代的情况下,基于 MPI 直接确定连接隐藏层和输出层的权重。还提出了 LASSO(最小绝对收缩和选择算子)方法进行比较。使用单核苷酸多态性(SNP)模拟数据和真实乳腺癌数据通过 5 倍交叉验证来验证 MPI-ANN 方法的性能。实验结果表明,MPI-ANN 对于疾病分类和预测是有效的,因为其具有明显更高的准确性(即正确预测的比率),优于 LASSO。基于真实乳腺癌数据的结果还表明,MPI-ANN 比其他机器学习方法(包括支持向量机(SVM)、逻辑回归(LR)和迭代 ANN)具有更好的性能。此外,实验还表明,我们的 MPI-ANN 可用于生物标志物选择。

相似文献

1
A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
J Biomed Inform. 2014 Apr;48:114-21. doi: 10.1016/j.jbi.2013.12.009. Epub 2013 Dec 18.
2
A stacking ensemble deep learning approach to cancer type classification based on TCGA data.
Sci Rep. 2021 Aug 2;11(1):15626. doi: 10.1038/s41598-021-95128-x.
3
An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction.
Front Public Health. 2022 Mar 31;10:860396. doi: 10.3389/fpubh.2022.860396. eCollection 2022.
4
Architectures and accuracy of artificial neural network for disease classification from omics data.
BMC Genomics. 2019 Mar 4;20(1):167. doi: 10.1186/s12864-019-5546-z.
5
Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
Environ Sci Pollut Res Int. 2019 Feb;26(4):3368-3381. doi: 10.1007/s11356-018-3749-5. Epub 2018 Dec 3.
6
Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study.
Comput Biol Med. 2019 Jun;109:101-111. doi: 10.1016/j.compbiomed.2019.04.017. Epub 2019 Apr 25.
7
Machine learning approaches for sex estimation using cranial measurements.
Int J Legal Med. 2021 May;135(3):951-966. doi: 10.1007/s00414-020-02460-4. Epub 2020 Nov 11.
8
Prediction of prostate cancer by deep learning with multilayer artificial neural network.
Can Urol Assoc J. 2019 May;13(5):E145-E150. doi: 10.5489/cuaj.5526. Epub 2018 Oct 15.
9
Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data.
Lab Invest. 2021 Apr;101(4):430-441. doi: 10.1038/s41374-020-00525-x. Epub 2021 Feb 11.
10
Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
Curr Med Imaging. 2020;16(6):703-710. doi: 10.2174/1573405615666190801121506.

引用本文的文献

1
8
Revealing Biological Pathways Implicated in Lung Cancer from TCGA Gene Expression Data Using Gene Set Enrichment Analysis.
Cancer Inform. 2014 Dec 1;13(Suppl 1):113-21. doi: 10.4137/CIN.S13882. eCollection 2014.

本文引用的文献

1
Synergistic effect of different levels of genomic data for cancer clinical outcome prediction.
J Biomed Inform. 2012 Dec;45(6):1191-8. doi: 10.1016/j.jbi.2012.07.008. Epub 2012 Aug 15.
3
A bayesian method for evaluating and discovering disease loci associations.
PLoS One. 2011;6(8):e22075. doi: 10.1371/journal.pone.0022075. Epub 2011 Aug 10.
4
Prediction of breast cancer using artificial neural networks.
J Med Syst. 2012 Oct;36(5):2901-7. doi: 10.1007/s10916-011-9768-0. Epub 2011 Aug 12.
5
Learning genetic epistasis using Bayesian network scoring criteria.
BMC Bioinformatics. 2011 Mar 31;12:89. doi: 10.1186/1471-2105-12-89.
6
A Bayesian spatio-temporal method for disease outbreak detection.
J Am Med Inform Assoc. 2010 Jul-Aug;17(4):462-71. doi: 10.1136/jamia.2009.000356.
7
Identifying genetic interactions in genome-wide data using Bayesian networks.
Genet Epidemiol. 2010 Sep;34(6):575-81. doi: 10.1002/gepi.20514.
8
A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks.
Breast Cancer Res Treat. 2010 Feb;120(1):83-93. doi: 10.1007/s10549-009-0378-1. Epub 2009 Apr 4.
9
Capabilities of a four-layered feedforward neural network: four layers versus three.
IEEE Trans Neural Netw. 1997;8(2):251-5. doi: 10.1109/72.557662.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验