Suppr超能文献

青出于蓝而胜于蓝:人类多能干细胞中的靶向基因组编辑技术。

A cut above the rest: targeted genome editing technologies in human pluripotent stem cells.

机构信息

From the Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037 and.

出版信息

J Biol Chem. 2014 Feb 21;289(8):4594-9. doi: 10.1074/jbc.R113.488247. Epub 2013 Dec 20.

Abstract

Human pluripotent stem cells (hPSCs) offer unprecedented opportunities to study cellular differentiation and model human diseases. The ability to precisely modify any genomic sequence holds the key to realizing the full potential of hPSCs. Thanks to the rapid development of novel genome editing technologies driven by the enormous interest in the hPSC field, genome editing in hPSCs has evolved from being a daunting task a few years ago to a routine procedure in most laboratories. Here, we provide an overview of the mainstream genome editing tools, including zinc finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases, and helper-dependent adenoviral vectors. We discuss the features and limitations of these technologies, as well as how these factors influence the utility of these tools in basic research and therapies.

摘要

人类多能干细胞(hPSCs)为研究细胞分化和人类疾病模型提供了前所未有的机会。精确修饰任何基因组序列的能力是实现 hPSCs 全部潜力的关键。由于 hPSC 领域的巨大兴趣推动了新型基因组编辑技术的快速发展,hPSC 中的基因组编辑已经从几年前的一项艰巨任务发展成为大多数实验室的常规程序。在这里,我们概述了主流的基因组编辑工具,包括锌指核酸酶、转录激活因子样效应物核酸酶、成簇规律间隔短回文重复/ Cas9 RNA 引导的核酸酶和辅助依赖性腺病毒载体。我们讨论了这些技术的特点和局限性,以及这些因素如何影响这些工具在基础研究和治疗中的应用。

相似文献

1
A cut above the rest: targeted genome editing technologies in human pluripotent stem cells.
J Biol Chem. 2014 Feb 21;289(8):4594-9. doi: 10.1074/jbc.R113.488247. Epub 2013 Dec 20.
2
TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
Curr Protoc Stem Cell Biol. 2015 Aug 3;34:5B.3.1-5B.3.25. doi: 10.1002/9780470151808.sc05b03s34.
3
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub 2013 Aug 12.
4
Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions.
Cell Stem Cell. 2016 Jan 7;18(1):53-65. doi: 10.1016/j.stem.2015.12.002.
5
The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
Methods Enzymol. 2014;546:215-50. doi: 10.1016/B978-0-12-801185-0.00011-8.
6
hPSC gene editing for cardiac disease therapy.
Pflugers Arch. 2022 Nov;474(11):1123-1132. doi: 10.1007/s00424-022-02751-2. Epub 2022 Sep 27.
7
Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
Curr Protoc Hum Genet. 2016 Jan 1;88:21.4.1-21.4.23. doi: 10.1002/0471142905.hg2104s88.
8
Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging.
Circ Res. 2012 Dec 7;111(12):1494-503. doi: 10.1161/CIRCRESAHA.112.274969. Epub 2012 Sep 11.
9
CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
Methods Mol Biol. 2017;1498:57-78. doi: 10.1007/978-1-4939-6472-7_5.
10
To CRISPR and beyond: the evolution of genome editing in stem cells.
Regen Med. 2016 Dec;11(8):801-816. doi: 10.2217/rme-2016-0107. Epub 2016 Dec 1.

引用本文的文献

2
Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells.
Cell Transplant. 2024 Jan-Dec;33:9636897241241998. doi: 10.1177/09636897241241998.
4
Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine.
Curr Med Chem. 2024;31(13):1646-1690. doi: 10.2174/0929867330666230503144619.
5
Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms.
Cell Mol Life Sci. 2023 Feb 23;80(3):67. doi: 10.1007/s00018-023-04723-w.
6
Therapeutic Application of Genome Editing Technologies in Viral Diseases.
Int J Mol Sci. 2022 May 12;23(10):5399. doi: 10.3390/ijms23105399.
7
Genome Editing Technologies as Cellular Defense Against Viral Pathogens.
Front Cell Dev Biol. 2021 Jul 15;9:716344. doi: 10.3389/fcell.2021.716344. eCollection 2021.
8
Usher syndrome: clinical features, molecular genetics and advancing therapeutics.
Ther Adv Ophthalmol. 2020 Sep 17;12:2515841420952194. doi: 10.1177/2515841420952194. eCollection 2020 Jan-Dec.
10
Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells.
NPJ Parkinsons Dis. 2020 Apr 24;6:8. doi: 10.1038/s41531-020-0110-8. eCollection 2020.

本文引用的文献

2
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
Nat Biotechnol. 2013 Sep;31(9):822-6. doi: 10.1038/nbt.2623. Epub 2013 Jun 23.
3
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.
Cell. 2013 May 9;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub 2013 May 2.
4
Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs.
Cell Stem Cell. 2013 Apr 4;12(4):393-4. doi: 10.1016/j.stem.2013.03.006.
5
A library of TAL effector nucleases spanning the human genome.
Nat Biotechnol. 2013 Mar;31(3):251-8. doi: 10.1038/nbt.2517. Epub 2013 Feb 17.
6
RNA-programmed genome editing in human cells.
Elife. 2013 Jan 29;2:e00471. doi: 10.7554/eLife.00471.
7
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.
Nat Biotechnol. 2013 Mar;31(3):230-2. doi: 10.1038/nbt.2507. Epub 2013 Jan 29.
8
Reprogrammed cells for disease modeling and regenerative medicine.
Annu Rev Med. 2013;64:277-90. doi: 10.1146/annurev-med-050311-163324.
9
RNA-guided human genome engineering via Cas9.
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
10
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验