Suppr超能文献

相似文献

1
Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
Curr Protoc Hum Genet. 2016 Jan 1;88:21.4.1-21.4.23. doi: 10.1002/0471142905.hg2104s88.
2
CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
Methods Mol Biol. 2017;1498:57-78. doi: 10.1007/978-1-4939-6472-7_5.
3
Genome Editing in Human Pluripotent Stem Cells.
Methods Mol Biol. 2017;1590:165-174. doi: 10.1007/978-1-4939-6921-0_12.
5
The CRISPR-Cas system for plant genome editing: advances and opportunities.
J Exp Bot. 2015 Jan;66(1):47-57. doi: 10.1093/jxb/eru429. Epub 2014 Nov 4.
6
A cut above the rest: targeted genome editing technologies in human pluripotent stem cells.
J Biol Chem. 2014 Feb 21;289(8):4594-9. doi: 10.1074/jbc.R113.488247. Epub 2013 Dec 20.
7
The CRISPR/Cas9 system for plant genome editing and beyond.
Biotechnol Adv. 2015 Jan-Feb;33(1):41-52. doi: 10.1016/j.biotechadv.2014.12.006. Epub 2014 Dec 20.
8
The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
Methods Enzymol. 2014;546:215-50. doi: 10.1016/B978-0-12-801185-0.00011-8.
10
Origins of Programmable Nucleases for Genome Engineering.
J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89. doi: 10.1016/j.jmb.2015.10.014. Epub 2015 Oct 23.

引用本文的文献

1
Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts.
Bioact Mater. 2023 May 27;28:206-226. doi: 10.1016/j.bioactmat.2023.05.015. eCollection 2023 Oct.
7
In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.
Adv Healthc Mater. 2018 Aug;7(15):e1701498. doi: 10.1002/adhm.201701498. Epub 2018 Apr 25.
9
Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases.
Prog Retin Eye Res. 2017 May;58:1-27. doi: 10.1016/j.preteyeres.2017.01.004. Epub 2017 Jan 19.
10
Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy.
Mol Neurobiol. 2017 Nov;54(9):7401-7459. doi: 10.1007/s12035-016-0214-7. Epub 2016 Nov 5.

本文引用的文献

1
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
Nat Biotechnol. 2015 Feb;33(2):187-197. doi: 10.1038/nbt.3117. Epub 2014 Dec 16.
2
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Nature. 2015 Jan 29;517(7536):583-8. doi: 10.1038/nature14136. Epub 2014 Dec 10.
3
Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells.
Mol Cell. 2014 May 22;54(4):698-710. doi: 10.1016/j.molcel.2014.04.022. Epub 2014 May 15.
4
Isolation of single-base genome-edited human iPS cells without antibiotic selection.
Nat Methods. 2014 Mar;11(3):291-3. doi: 10.1038/nmeth.2840. Epub 2014 Feb 9.
5
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
Cell. 2013 Sep 12;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub 2013 Aug 29.
6
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
Nat Biotechnol. 2013 Sep;31(9):839-43. doi: 10.1038/nbt.2673. Epub 2013 Aug 11.
7
DNA targeting specificity of RNA-guided Cas9 nucleases.
Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.
8
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
Cell. 2013 Jul 18;154(2):442-51. doi: 10.1016/j.cell.2013.06.044. Epub 2013 Jul 11.
9
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
Nat Biotechnol. 2013 Sep;31(9):822-6. doi: 10.1038/nbt.2623. Epub 2013 Jun 23.
10
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验