Suppr超能文献

一种新型杆状病毒载体,用于在昆虫细胞中生产非岩藻糖基化的重组糖蛋白。

A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells.

机构信息

Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.

出版信息

Glycobiology. 2014 Mar;24(3):325-40. doi: 10.1093/glycob/cwt161. Epub 2013 Dec 20.

Abstract

Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.

摘要

糖基化是杆状病毒-昆虫细胞表达系统的一个重要特征,但有些昆虫细胞系产生核心α1,3-岩藻糖基化的 N-聚糖,这些聚糖具有高度免疫原性,使重组糖蛋白不适合人类使用。为了解决这个问题,我们利用了一种细菌酶,即鸟苷-5'-二磷酸(GDP)-4-去氢-6-脱氧-D-甘露糖还原酶(Rmd),它消耗 GDP-L-岩藻糖前体。我们期望这种酶通过阻断 GDP-L-岩藻糖的产生来阻止糖蛋白的岩藻糖化,因为 GDP-L-岩藻糖是该过程所需的供体底物。最初,我们设计了两种不同的昆虫细胞系来组成型表达 Rmd,并分离出具有岩藻糖阴性表型的亚克隆。然而,我们发现 Rmd 表达诱导的岩藻糖阴性表型不稳定,表明这种宿主细胞工程方法在昆虫系统中无效。因此,我们构建了一种杆状病毒载体,该载体设计用于在感染后立即表达 Rmd,并便于插入编码任何感兴趣的糖蛋白的基因,以便在感染后进行表达。我们使用该载体来生产编码利妥昔单抗的子代,并发现与 Rmd 阴性对照相比,感染这种病毒的昆虫细胞产生了这种治疗性抗体的非岩藻糖化形式。这些结果表明,我们的 Rmd(+)杆状病毒载体可用于解决与杆状病毒-昆虫细胞系统相关的免疫原性核心α1,3-岩藻糖基化问题。与现有的糖基工程昆虫细胞系结合使用,该载体扩展了杆状病毒-昆虫细胞系统的用途,包括治疗性糖蛋白的生产。由于该载体能够阻断核心α1,6-岩藻糖基化,因此它还扩展了杆状病毒-昆虫细胞系统的用途,包括生产具有增强效应功能的重组抗体。

相似文献

1
A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells.
Glycobiology. 2014 Mar;24(3):325-40. doi: 10.1093/glycob/cwt161. Epub 2013 Dec 20.
4
Insect cells as hosts for the expression of recombinant glycoproteins.
Glycoconj J. 1999 Feb;16(2):109-23. doi: 10.1023/a:1026488408951.
5
7
POFUT1-mediated O-fucosylation of glycoproteins expressed in the baculovirus Sf9 insect cell expression system.
J Biotechnol. 2024 Jan 10;379:53-64. doi: 10.1016/j.jbiotec.2023.12.002. Epub 2023 Dec 7.
9
Improving the baculovirus expression vector system with vankyrin-enhanced technology.
Biotechnol Prog. 2017 Nov;33(6):1496-1507. doi: 10.1002/btpr.2516. Epub 2017 Jul 6.

引用本文的文献

1
Effect of glycosylation on protein folding: From biological roles to chemical protein synthesis.
iScience. 2025 May 8;28(6):112605. doi: 10.1016/j.isci.2025.112605. eCollection 2025 Jun 20.
2
Modulating antibody effector functions by Fc glycoengineering.
Biotechnol Adv. 2023 Oct;67:108201. doi: 10.1016/j.biotechadv.2023.108201. Epub 2023 Jun 17.
3
Improved Expression of SARS-CoV-2 Spike RBD Using the Insect Cell-Baculovirus System.
Viruses. 2022 Dec 15;14(12):2794. doi: 10.3390/v14122794.
4
Characterization and immunogenicity of SARS-CoV-2 spike proteins with varied glycosylation.
Vaccine. 2022 Nov 8;40(47):6839-6848. doi: 10.1016/j.vaccine.2022.09.057. Epub 2022 Sep 26.
5
Strategies for Glycoengineering Therapeutic Proteins.
Front Chem. 2022 Apr 13;10:863118. doi: 10.3389/fchem.2022.863118. eCollection 2022.
6
An Integrated Platform for Serological Detection and Vaccination of COVID-19.
Front Immunol. 2021 Dec 23;12:771011. doi: 10.3389/fimmu.2021.771011. eCollection 2021.
7
Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation.
Exp Suppl. 2021;112:481-517. doi: 10.1007/978-3-030-76912-3_15.
8
A new nodavirus-negative Trichoplusia ni cell line for baculovirus-mediated protein production.
Biotechnol Bioeng. 2020 Nov;117(11):3248-3264. doi: 10.1002/bit.27494. Epub 2020 Jul 25.
9
Synthetic Glycobiology: Parts, Systems, and Applications.
ACS Synth Biol. 2020 Jul 17;9(7):1534-1562. doi: 10.1021/acssynbio.0c00210. Epub 2020 Jun 30.
10
Glycoengineering of Antibodies for Modulating Functions.
Annu Rev Biochem. 2019 Jun 20;88:433-459. doi: 10.1146/annurev-biochem-062917-012911. Epub 2019 Mar 27.

本文引用的文献

1
Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2.
Cell Rep. 2013 Aug 29;4(4):830-41. doi: 10.1016/j.celrep.2013.07.032. Epub 2013 Aug 22.
2
Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):E2987-96. doi: 10.1073/pnas.1302725110. Epub 2013 Jul 23.
4
Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells.
Glycobiology. 2013 Feb;23(2):199-210. doi: 10.1093/glycob/cws143. Epub 2012 Oct 12.
6
Lepidopteran cells, an alternative for the production of recombinant antibodies?
MAbs. 2012 May-Jun;4(3):294-309. doi: 10.4161/mabs.19942. Epub 2012 Apr 26.
7
Multifarious roles of sialic acids in immunity.
Ann N Y Acad Sci. 2012 Apr;1253(1):16-36. doi: 10.1111/j.1749-6632.2012.06517.x.
8
SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells.
PLoS One. 2012;7(4):e34226. doi: 10.1371/journal.pone.0034226. Epub 2012 Apr 2.
9
Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle.
J Biol Chem. 2012 Apr 6;287(15):12159-71. doi: 10.1074/jbc.M111.297036. Epub 2012 Feb 13.
10
Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks.
Biotechnol Adv. 2012 May-Jun;30(3):766-81. doi: 10.1016/j.biotechadv.2012.01.009. Epub 2012 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验