Huang Chunhui, Chernyak Natalia, Dudnik Alexander S, Gevorgyan Vladimir
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
Adv Synth Catal. 2011 May 1;353(8). doi: 10.1002/adsc.201000975.
A novel, easily removable and modifiable silicon-tethered pyridyldiisopropylsilyl directing group for C-H functionalizations of arenes has been developed. The installation of the pyridyldiisopropylsilyl group can efficiently be achieved two complementary routes using easily available 2-(diisopropylsilyl)pyridine (). The first strategy features a nucleophilic hydride substitution at the silicon atom in with aryllithium reagents generated from the corresponding aryl bromides or iodides. The second milder route exploits a highly efficient room-temperature rhodium(I)-catalyzed cross-coupling reaction between and aryl iodides. The latter approach can be applied to the preparation of a wide range of pyridyldiisopropylsilyl-substituted arenes possessing a variety of functional groups, including those incompatible with organometallic reagents. The pyridyldiisopropylsilyl directing group allows for a highly efficient, regioselective palladium(II)-catalyzed mono--acyloxylation and -halogenation of various aromatic compounds. Most impor-tantly, the silicon-tethered directing group in both acyloxylated and halogenated products can easily be removed or efficiently converted into an array of other valuable functionalities. These transformations include protio-, deuterio-, halo-, boro-, and alkynyldesilylations, as well as a conversion of the directing group into the hydroxy functionality. In addition, the construction of aryl-aryl bonds the Hiyama-Denmark cross-coupling reaction is feasible for the acetoxylated products. Moreover, the -halogenated pyridyldiisopropylsilylarenes, bearing both nucleophilic pyridyldiisopropylsilyl and electrophilic aryl halide moieties, represent synthetically attractive 1,2-ambiphiles. A unique reactivity of these ambiphiles has been demonstrated in efficient syntheses of arylenediyne and benzosilole derivatives, as well as in a facile generation of benzyne. In addition, preliminary mechanistic studies of the acyloxylation and halogenation reactions have been performed. A trinuclear palladacycle intermediate has been isolated from a stoichiometric reaction between diisopropyl-(phenyl)pyrid-2-ylsilane () and palladium acetate. Furthermore, both C-H functionalization reactions exhibited equally high values of the intramolecular primary kinetic isotope effect (/ = 6.7). Based on these observations, a general mechanism involving the formation of a palladacycle a C-H activation process as the rate-determining step has been proposed.
已开发出一种用于芳烃C-H官能化的新型、易于去除和修饰的硅连接吡啶基二异丙基硅基导向基团。使用易于获得的2-(二异丙基硅基)吡啶(),通过两条互补路线可高效实现吡啶基二异丙基硅基的安装。第一种策略的特点是,在中,硅原子上的亲核氢化物与由相应芳基溴化物或碘化物生成的芳基锂试剂发生取代反应。第二条较温和的路线利用了与芳基碘化物之间在室温下高效的铑(I)催化交叉偶联反应。后一种方法可用于制备各种具有不同官能团的吡啶基二异丙基硅基取代芳烃,包括那些与有机金属试剂不相容的官能团。吡啶基二异丙基硅基导向基团可实现各种芳香化合物的高效、区域选择性钯(II)催化单酰氧基化和卤化反应。最重要的是,酰氧基化和卤化产物中的硅连接导向基团可轻松去除或高效转化为一系列其他有价值的官能团。这些转化包括质子、氘、卤、硼和炔基脱硅基化反应,以及导向基团向羟基官能团的转化。此外,对于乙酰氧基化产物,通过日山-丹麦交叉偶联反应构建芳基-芳基键是可行的。此外,带有亲核吡啶基二异丙基硅基和亲电芳基卤部分的卤代吡啶基二异丙基硅基芳烃代表了具有合成吸引力的1,2-双亲体。这些双亲体的独特反应性已在亚芳基二炔和苯并硅杂环戊二烯衍生物的高效合成以及苯炔的轻松生成中得到证明。此外,还对酰氧基化和卤化反应进行了初步机理研究。从二异丙基-(苯基)吡啶-2-基硅烷()与乙酸钯的化学计量反应中分离出了一种三核钯环中间体。此外,两种C-H官能化反应均表现出同样高的分子内一级动力学同位素效应值(/ = 6.7)。基于这些观察结果,提出了一种涉及形成钯环作为速率决定步骤的C-H活化过程的通用机理。