Suppr超能文献

CTL 免疫反应和时滞分布下 CD4+T 细胞和巨噬细胞中 HIV 感染的全局稳定性。

Global stability of HIV infection of CD4+ T cells and macrophages with CTL immune response and distributed delays.

机构信息

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia ; Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71511, Egypt.

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

出版信息

Comput Math Methods Med. 2013;2013:653204. doi: 10.1155/2013/653204. Epub 2013 Dec 2.

Abstract

We study the global stability of a human immunodeficiency virus (HIV) infection model with Cytotoxic T Lymphocytes (CTL) immune response. The model describes the interaction of the HIV with two classes of target cells, CD4(+) T cells and macrophages. Two types of distributed time delays are incorporated into the model to describe the time needed for infection of target cell and virus replication. Using the method of Lyapunov functional, we have established that the global stability of the model is determined by two threshold numbers, the basic reproduction number R0 and the immune response reproduction number R0(∗). We have proven that, if R0 ≤ 1, then the uninfected steady state is globally asymptotically stable (GAS), if R0* ≤ 1 < R0, then the infected steady state without CTL immune response is GAS, and, if R0* > 1, then the infected steady state with CTL immune response is GAS.

摘要

我们研究了具有细胞毒性 T 淋巴细胞(CTL)免疫反应的人类免疫缺陷病毒(HIV)感染模型的全局稳定性。该模型描述了 HIV 与两类靶细胞(CD4(+)T 细胞和巨噬细胞)的相互作用。模型中引入了两种分布时滞,以描述感染靶细胞和病毒复制所需的时间。利用李雅普诺夫泛函方法,我们已经确定模型的全局稳定性由两个阈值数决定,基本繁殖数 R0 和免疫反应繁殖数 R0(∗)。我们已经证明,如果 R0 ≤ 1,则未感染的稳定状态是全局渐近稳定的(GAS),如果 R0* ≤ 1 < R0,则没有 CTL 免疫反应的感染稳定状态是 GAS,并且,如果 R0* > 1,则具有 CTL 免疫反应的感染稳定状态是 GAS。

相似文献

1
Global stability of HIV infection of CD4+ T cells and macrophages with CTL immune response and distributed delays.
Comput Math Methods Med. 2013;2013:653204. doi: 10.1155/2013/653204. Epub 2013 Dec 2.
3
Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays.
Math Biosci Eng. 2019 Mar 22;16(4):2587-2612. doi: 10.3934/mbe.2019130.
4
Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response.
Math Biosci Eng. 2019 Aug 27;16(6):7850-7882. doi: 10.3934/mbe.2019395.
7
Virus dynamics model with intracellular delays and immune response.
Math Biosci Eng. 2015 Feb;12(1):185-208. doi: 10.3934/mbe.2015.12.185.
9
Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells.
J Virol. 2016 Jul 27;90(16):7066-7083. doi: 10.1128/JVI.00306-16. Print 2016 Aug 15.

本文引用的文献

2
Mathematical analysis of delay differential equation models of HIV-1 infection.
Math Biosci. 2002 Jul-Aug;179(1):73-94. doi: 10.1016/s0025-5564(02)00099-8.
3
HIV-1 infection and low steady state viral loads.
Bull Math Biol. 2002 Jan;64(1):29-64. doi: 10.1006/bulm.2001.0266.
4
A delay-differential equation model of HIV infection of CD4(+) T-cells.
Math Biosci. 2000 May;165(1):27-39. doi: 10.1016/s0025-5564(00)00006-7.
5
A model of HIV-1 pathogenesis that includes an intracellular delay.
Math Biosci. 2000 Feb;163(2):201-15. doi: 10.1016/s0025-5564(99)00055-3.
6
Influence of delayed viral production on viral dynamics in HIV-1 infected patients.
Math Biosci. 1998 Sep;152(2):143-63. doi: 10.1016/s0025-5564(98)10027-5.
7
Decay characteristics of HIV-1-infected compartments during combination therapy.
Nature. 1997 May 8;387(6629):188-91. doi: 10.1038/387188a0.
8
Population dynamics of immune responses to persistent viruses.
Science. 1996 Apr 5;272(5258):74-9. doi: 10.1126/science.272.5258.74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验