Suppr超能文献

用于分子表面构建的高阶分数阶偏微分方程变换

High-order fractional partial differential equation transform for molecular surface construction.

作者信息

Hu Langhua, Chen Duan, Wei Guo-Wei

机构信息

Department of Mathematics Michigan State University, MI 48824, USA.

Mathematical Biosciences Institute The Ohio State University, Columbus, OH, 43210, USA.

出版信息

Mol Based Math Biol. 2013 Jan 1;1. doi: 10.2478/mlbmb-2012-0001,.

Abstract

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.

摘要

分数阶导数或分数阶微积分在科学和工程问题的理论建模中发挥着重要作用。然而,目前仅使用了相对低阶的分数阶导数。一般来说,高阶分数阶导数能发挥什么作用以及如何利用任意高阶分数阶导数并不明显。这项工作引入了任意高阶分数阶偏微分方程(PDEs)来描述分数阶超扩散。这些分数阶偏微分方程是通过分数阶变分原理构建的。提出了一种快速分数阶傅里叶变换(FFFT)来对高阶分数阶偏微分方程进行数值积分,以避免在求解高阶演化偏微分方程时受到严格的稳定性约束。所提出的高阶分数阶偏微分方程被应用于蛋白质表面生成。我们首先在二维和三维设置下用各种测试示例验证了所提出的方法。研究了高阶分数阶导数对表面分析的影响。我们还基于任意高阶分数阶偏微分方程构建了分数阶偏微分方程变换。我们证明,在分数阶偏微分方程变换中使用任意高阶导数会导致时频定位、频谱分布控制和空间分辨率调节。因此,分数阶偏微分方程变换能够对图像、信号和表面进行模式分解。还研究了传播时间对所得分子表面质量的影响。将当前表面生成方法的计算效率与笛卡尔表示中的MSMS方法进行了比较。我们通过检查大分子表面的一些基准指标,即表面积、表面封闭体积、表面静电势和溶剂化自由能,进一步验证了本方法。广泛的数值实验以及与已建立的表面模型的比较表明,所提出的高阶分数阶偏微分方程对于生物分子表面生成是稳健、稳定且高效的。

相似文献

1
High-order fractional partial differential equation transform for molecular surface construction.
Mol Based Math Biol. 2013 Jan 1;1. doi: 10.2478/mlbmb-2012-0001,.
2
Biomolecular surface construction by PDE transform.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):291-316. doi: 10.1002/cnm.1469. Epub 2011 Sep 26.
3
Mode decomposition evolution equations.
J Sci Comput. 2012 Mar 1;50(3):495-518. doi: 10.1007/s10915-011-9509-z.
4
Partial differential equation transform - Variational formulation and Fourier analysis.
Int J Numer Method Biomed Eng. 2011 Dec;27(12):1996-2020. doi: 10.1002/cnm.1452.
5
Geometric algebra generation of molecular surfaces.
J R Soc Interface. 2022 Apr;19(189):20220117. doi: 10.1098/rsif.2022.0117. Epub 2022 Apr 13.
6
Multiscale geometric modeling of macromolecules I: Cartesian representation.
J Comput Phys. 2014 Jan;257(Pt A). doi: 10.1016/j.jcp.2013.09.034.
7
Differential geometry based solvation model II: Lagrangian formulation.
J Math Biol. 2011 Dec;63(6):1139-200. doi: 10.1007/s00285-011-0402-z. Epub 2011 Jan 30.
8
Linear quadratic regulator problem governed by granular neutrosophic fractional differential equations.
ISA Trans. 2020 Feb;97:296-316. doi: 10.1016/j.isatra.2019.08.006. Epub 2019 Aug 5.
10
A fast alternating direction implicit algorithm for geometric flow equations in biomolecular surface generation.
Int J Numer Method Biomed Eng. 2014 Apr;30(4):490-516. doi: 10.1002/cnm.2613. Epub 2013 Nov 15.

引用本文的文献

1
Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes.
Mol Based Math Biol. 2013 Jul;1. doi: 10.2478/mlbmb-2013-0009.

本文引用的文献

1
Variational multiscale models for charge transport.
SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. doi: 10.1137/110845690. Epub 2012 Nov 8.
2
Evolution-operator-based single-step method for image processing.
Int J Biomed Imaging. 2006;2006:83847. doi: 10.1155/IJBI/2006/83847. Epub 2006 Feb 2.
3
Biomolecular surface construction by PDE transform.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):291-316. doi: 10.1002/cnm.1469. Epub 2011 Sep 26.
4
Mode decomposition evolution equations.
J Sci Comput. 2012 Mar 1;50(3):495-518. doi: 10.1007/s10915-011-9509-z.
5
Iterative filtering decomposition based on local spectral evolution kernel.
J Sci Comput. 2012 Mar 1;50(3):629-664. doi: 10.1007/s10915-011-9496-0.
6
Selective Extraction of Entangled Textures via Adaptive PDE Transform.
Int J Biomed Imaging. 2012;2012:958142. doi: 10.1155/2012/958142. Epub 2012 Jan 16.
7
Partial differential equation transform - Variational formulation and Fourier analysis.
Int J Numer Method Biomed Eng. 2011 Dec;27(12):1996-2020. doi: 10.1002/cnm.1452.
8
Poisson-Boltzmann-Nernst-Planck model.
J Chem Phys. 2011 May 21;134(19):194101. doi: 10.1063/1.3581031.
9
Second-order Poisson Nernst-Planck solver for ion channel transport.
J Comput Phys. 2011 Jun;230(13):5239-5262. doi: 10.1016/j.jcp.2011.03.020.
10
Differential geometry based solvation model II: Lagrangian formulation.
J Math Biol. 2011 Dec;63(6):1139-200. doi: 10.1007/s00285-011-0402-z. Epub 2011 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验