Depaoli Sarah, Boyajian Jonathan
Psychological Sciences, School of Social Sciences, Humanities, and Arts, University of California.
J Consult Clin Psychol. 2014 Oct;82(5):784-802. doi: 10.1037/a0035147. Epub 2013 Dec 23.
Conventional estimation of longitudinal growth models can produce inaccurate parameter estimates under certain research scenarios (e.g., smaller sample sizes and nonlinear growth patterns) and thus lead to potentially misleading interpretations of results (i.e., interpreting growth patterns that do not reflect the population patterns). The current article used patterns of change in cigarette and alcohol abuse prevalence and depression levels to demonstrate an alternative method for estimating growth models more accurately under these conditions, namely, via the Bayesian estimation framework. This article acts as an introduction and tutorial for implementing Bayesian methods when examining growth or change over time, particularly nonlinear growth.
The National Longitudinal Survey of Youth 1997 database was used to highlight different linear and nonlinear (quadratic and logistic) growth models via growth curve modeling (GCM) and growth mixture modeling (GMM). The specific focus was on changes in cigarette/alcohol consumption and depression throughout adolescence and young adulthood. Specifically, a nationally representative group of individuals between the ages of 12 and 16 years were assessed at 4 time-points for levels of cigarette consumption, alcohol use, and depression.
The results for each example illustrated different patterns of linear and nonlinear growth via GCM and GMM through the versatile Bayesian estimation framework.
Growth models may benefit from the Bayesian perspective by incorporating prior information or knowledge into the model, especially when sample sizes are small or growth is nonlinear. A step-by-step tutorial for assessing various growth models via the Bayesian perspective is provided as online supplemental material.
在某些研究场景下(例如样本量较小和非线性增长模式),传统的纵向生长模型估计可能会产生不准确的参数估计,从而导致对结果的潜在误导性解释(即解释不能反映总体模式的生长模式)。本文利用香烟和酒精滥用患病率以及抑郁水平的变化模式,展示了一种在这些条件下更准确地估计生长模型的替代方法,即通过贝叶斯估计框架。本文作为在研究随时间的生长或变化,特别是非线性生长时实施贝叶斯方法的介绍和教程。
使用1997年全国青年纵向调查数据库,通过生长曲线建模(GCM)和生长混合建模(GMM)突出不同的线性和非线性(二次和逻辑)生长模型。具体重点是整个青春期和青年期香烟/酒精消费和抑郁的变化。具体而言,对一组年龄在12至16岁之间具有全国代表性的个体在4个时间点评估香烟消费、酒精使用和抑郁水平。
每个示例的结果通过通用的贝叶斯估计框架,通过GCM和GMM说明了线性和非线性生长的不同模式。
生长模型可能会从贝叶斯视角中受益,通过将先验信息或知识纳入模型,特别是在样本量较小或生长是非线性的情况下。作为在线补充材料提供了通过贝叶斯视角评估各种生长模型的分步教程。