Suppr超能文献

高亮度同步辐射源聚焦 X 射线光束的相干性。

Coherence properties of focused X-ray beams at high-brilliance synchrotron sources.

机构信息

Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.

出版信息

J Synchrotron Radiat. 2014 Jan;21(Pt 1):5-15. doi: 10.1107/S1600577513023850. Epub 2013 Nov 2.

Abstract

An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here Gaussian Schell-model beams and thin optical elements are considered. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam-defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example, the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed.

摘要

提出了一种分析方法,用于描述聚焦部分相干 X 射线光束的特性。该方法基于统计光学的结果,给出了光学元件后任意距离处的光束尺寸和横向相干长度。特别是,这里考虑了高斯谢尔模型光束和薄光学元件。讨论了聚焦元件的非相干和完全相干照明的极限情况。还详细分析了典型地与同步加速器源中的聚焦元件结合使用以提高横向相干性的光束限定孔径的影响。作为一个例子,分析了在 PETRA III 同步加速器源的复合折射透镜的焦区中的相干特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04a3/3874016/e17adac49ec7/s-21-00005-fig1.jpg

相似文献

1
Coherence properties of focused X-ray beams at high-brilliance synchrotron sources.
J Synchrotron Radiat. 2014 Jan;21(Pt 1):5-15. doi: 10.1107/S1600577513023850. Epub 2013 Nov 2.
2
Hard X-ray ptychography for optics characterization using a partially coherent synchrotron source.
J Synchrotron Radiat. 2020 Nov 1;27(Pt 6):1688-1695. doi: 10.1107/S1600577520012151. Epub 2020 Oct 16.
3
Two-dimensional spatial coherence measurement of X-ray sources using aperture array mask.
Opt Express. 2023 Oct 23;31(22):36304-36313. doi: 10.1364/OE.503171.
4
Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams.
J Synchrotron Radiat. 1995 Jul 1;2(Pt 4):163-73. doi: 10.1107/S0909049595003190.
5
Twisted elliptical multi-Gaussian Schell-model beams and their propagation properties.
J Opt Soc Am A Opt Image Sci Vis. 2020 Jan 1;37(1):89-97. doi: 10.1364/JOSAA.37.000089.
6
The coherent radiation fraction of low-emittance synchrotrons.
J Synchrotron Radiat. 2017 May 1;24(Pt 3):566-575. doi: 10.1107/S1600577517003058. Epub 2017 Mar 24.
7
Atmospheric optical communication with a Gaussian Schell beam.
J Opt Soc Am A Opt Image Sci Vis. 2003 May;20(5):856-66. doi: 10.1364/josaa.20.000856.
10
Propagation of Gaussian Schell-model beams through a jet engine exhaust.
Opt Express. 2020 Jan 20;28(2):1037-1050. doi: 10.1364/OE.381242.

引用本文的文献

1
and X-ray Scattering Methods in Electrochemistry and Electrocatalysis.
Chem Rev. 2024 Feb 14;124(3):629-721. doi: 10.1021/acs.chemrev.3c00331. Epub 2024 Jan 22.
2
FOCUS: fast Monte Carlo approach to coherence of undulator sources.
J Synchrotron Radiat. 2023 Jan 1;30(Pt 1):217-226. doi: 10.1107/S1600577522010748.
3
On incoherent diffractive imaging.
Acta Crystallogr A Found Adv. 2021 Sep 1;77(Pt 5):480-496. doi: 10.1107/S2053273321007300. Epub 2021 Aug 27.
4
Fast convolution-based performance estimation method for diffraction-limited source with imperfect X-ray optics.
J Synchrotron Radiat. 2020 Nov 1;27(Pt 6):1539-1552. doi: 10.1107/S1600577520012825. Epub 2020 Oct 23.
5
Focusing a round coherent beam by spatial filtering the horizontal source.
J Synchrotron Radiat. 2020 Nov 1;27(Pt 6):1528-1538. doi: 10.1107/S1600577520012163. Epub 2020 Oct 20.
6
Coherence properties of the high-energy fourth-generation X-ray synchrotron sources.
J Synchrotron Radiat. 2019 Nov 1;26(Pt 6):1851-1862. doi: 10.1107/S1600577519013079.
7
Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser.
Sci Rep. 2018 Feb 2;8(1):2219. doi: 10.1038/s41598-018-19793-1.
8
The potential of future light sources to explore the structure and function of matter.
IUCrJ. 2015 Feb 3;2(Pt 2):230-45. doi: 10.1107/S2052252514024269. eCollection 2015 Mar 1.
9
Hard X-ray nanofocusing at low-emittance synchrotron radiation sources.
J Synchrotron Radiat. 2014 Sep;21(Pt 5):996-1005. doi: 10.1107/S1600577514016269. Epub 2014 Aug 29.
10
A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation.
J Synchrotron Radiat. 2014 Jul;21(Pt 4):669-78. doi: 10.1107/S160057751400650X. Epub 2014 May 15.

本文引用的文献

1
Microfocusing transfocator for 1D and 2D compound refractive lenses.
Opt Express. 2012 Aug 13;20(17):18967-76. doi: 10.1364/OE.20.018967.
2
Spatial and temporal coherence properties of single free-electron laser pulses.
Opt Express. 2012 Jul 30;20(16):17480-95. doi: 10.1364/OE.20.017480.
3
Focusing femtosecond X-ray free-electron laser pulses by refractive lenses.
J Synchrotron Radiat. 2012 Jan;19(Pt 1):84-92. doi: 10.1107/S0909049511045778. Epub 2011 Nov 15.
4
Phase retrieval algorithms: a comparison.
Appl Opt. 1982 Aug 1;21(15):2758-69. doi: 10.1364/AO.21.002758.
5
Diffractive imaging using partially coherent x rays.
Phys Rev Lett. 2009 Dec 11;103(24):243902. doi: 10.1103/PhysRevLett.103.243902.
6
Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities.
J Biotechnol. 2010 Sep 15;149(4):229-37. doi: 10.1016/j.jbiotec.2010.01.024. Epub 2010 Feb 10.
7
Transverse-coherence properties of the free-electron-laser FLASH at DESY.
Phys Rev Lett. 2008 Dec 19;101(25):254801. doi: 10.1103/PhysRevLett.101.254801. Epub 2008 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验