Klöckner Udo, Rueckschloss Uwe, Grossmann Claudia, Matzat Saskia, Schumann Katja, Ebelt Henning, Müller-Werdan Ursula, Loppnow Harald, Werdan Karl, Gekle Michael
Julius Bernstein Institut für Physiologie, Martin Luther Universität Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle (Saale), Germany.
J Physiol. 2014 Mar 15;592(6):1199-211. doi: 10.1113/jphysiol.2013.268540. Epub 2013 Dec 23.
Depressed heart rate variability in severe inflammatory diseases can be partially explained by the lipopolysaccharide (LPS)-dependent modulation of cardiac pacemaker channels. Recently, we showed that LPS inhibits pacemaker current in sinoatrial node cells and in HEK293 cells expressing cloned pacemaker channels, respectively. The present study was designed to verify whether this inhibition involves LPS-dependent intracellular signalling and to identify structures of LPS responsible for pacemaker current modulation. We examined the effect of LPS on the activity of human hyperpolarization-activated cyclic nucleotide-gated channel 2 (hHCN2) stably expressed in HEK293 cells. In whole-cell recordings, bath application of LPS decreased pacemaker current (IhHCN2) amplitude. The same protocol had no effect on channel activity in cell-attached patch recordings, in which channels are protected from the LPS-containing bath solution. This demonstrates that LPS must interact directly with or close to the channel protein. After cleavage of LPS into lipid A and the polysaccharide chain, neither of them alone impaired IhHCN2, which suggests that modulation of channel activity critically depends on the integrity of the entire LPS molecule. We furthermore showed that β-cyclodextrin interfered with LPS-dependent channel modulation predominantly via scavenging of lipid A, thereby abrogating the capability of LPS to intercalate into target cell membranes. We conclude that LPS impairs IhHCN2 by a local mechanism that is restricted to the vicinity of the channels. Furthermore, intercalation of lipid A into target cell membranes is a prerequisite for the inhibition that is suggested to depend on the direct interaction of the LPS polysaccharide chain with cardiac pacemaker channels.
严重炎症性疾病中出现的心率变异性降低,部分原因可能是脂多糖(LPS)对心脏起搏器通道的依赖性调节。最近,我们发现LPS分别抑制窦房结细胞和表达克隆起搏器通道的HEK293细胞中的起搏电流。本研究旨在验证这种抑制作用是否涉及LPS依赖性细胞内信号传导,并确定负责调节起搏电流的LPS结构。我们研究了LPS对稳定表达于HEK293细胞中的人超极化激活环核苷酸门控通道2(hHCN2)活性的影响。在全细胞记录中,浴槽中加入LPS可降低起搏电流(IhHCN2)的幅度。同样的操作对细胞贴附式膜片钳记录中的通道活性没有影响,在这种记录方式中,通道受到含LPS的浴槽溶液的保护。这表明LPS必须直接与通道蛋白相互作用或靠近通道蛋白。将LPS切割成脂多糖A和多糖链后,单独的任何一种都不会损害IhHCN2,这表明通道活性的调节关键取决于整个LPS分子的完整性。我们还表明,β-环糊精主要通过清除脂多糖A来干扰LPS依赖性通道调节,从而消除LPS插入靶细胞膜的能力。我们得出结论,LPS通过一种局限于通道附近的局部机制损害IhHCN2。此外,脂多糖A插入靶细胞膜是抑制作用的前提条件,这种抑制作用被认为依赖于LPS多糖链与心脏起搏器通道的直接相互作用。