Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
Plant Physiol. 2014 Feb;164(2):805-18. doi: 10.1104/pp.113.231969. Epub 2013 Dec 23.
Oxygenic photosynthesis evolved with cyanobacteria, the ancestors of plant chloroplasts. The highly oxidizing chemistry of water splitting required concomitant evolution of efficient photoprotection mechanisms to safeguard the photosynthetic machinery. The role of flavodiiron proteins (FDPs), originally called A-type flavoproteins or Flvs, in this context has only recently been appreciated. Cyanobacterial FDPs constitute a specific protein group that evolved to protect oxygenic photosynthesis. There are four FDPs in Synechocystis sp. PCC 6803 (Flv1 to Flv4). Two of them, Flv2 and Flv4, are encoded by an operon together with a Sll0218 protein. Their expression, tightly regulated by CO2 levels, is also influenced by changes in light intensity. Here we describe the overexpression of the flv4-2 operon in Synechocystis sp. PCC 6803 and demonstrate that it results in improved photochemistry of PSII. The flv4-2/OE mutant is more resistant to photoinhibition of PSII and exhibits a more oxidized state of the plastoquinone pool and reduced production of singlet oxygen compared with control strains. Results of biophysical measurements indicate that the flv4-2 operon functions in an alternative electron transfer pathway from PSII, and thus alleviates PSII excitation pressure by channeling up to 30% of PSII-originated electrons. Furthermore, intact phycobilisomes are required for stable expression of the flv4-2 operon genes and for the Flv2/Flv4 heterodimer-mediated electron transfer mechanism. The latter operates in photoprotection in a complementary way with the orange carotenoid protein-related nonphotochemical quenching. Expression of the flv4-2 operon and exchange of the D1 forms in PSII centers upon light stress, on the contrary, are mutually exclusive photoprotection strategies among cyanobacteria.
需氧光合作用与蓝细菌一起进化,蓝细菌是植物叶绿体的祖先。水分解的高度氧化化学需要同时进化出有效的光保护机制来保护光合作用机器。 flavodiiron 蛋白 (FDP) 的作用,最初称为 A 型 flavoproteins 或 Flvs,在这种情况下只是最近才被认识到。蓝细菌 FDP 构成了一个专门的蛋白质组,进化以保护需氧光合作用。Synechocystis sp. PCC 6803 中有四个 FDP(Flv1 到 Flv4)。其中两个,Flv2 和 Flv4,与 Sll0218 蛋白一起由一个操纵子编码。它们的表达受 CO2 水平的严格调节,也受光强变化的影响。在这里,我们描述了 Synechocystis sp. PCC 6803 中 flv4-2 操纵子的过表达,并证明它导致 PSII 的光化学性能得到改善。flv4-2/OE 突变体对 PSII 的光抑制更具抗性,与对照菌株相比,质体醌池的氧化状态更还原,单线态氧的产生减少。生物物理测量结果表明,flv4-2 操纵子在 PSII 的替代电子转移途径中起作用,从而通过将高达 30%的 PSII 起源的电子转移到通道来减轻 PSII 的激发压力。此外,完整的藻胆体是稳定表达 flv4-2 操纵子基因和 Flv2/Flv4 异二聚体介导的电子转移机制所必需的。后者在光保护中以与橙色类胡萝卜素蛋白相关的非光化学猝灭互补的方式起作用。flv4-2 操纵子的表达和 PSII 中心 D1 形式的交换在光胁迫下相反,是蓝细菌之间相互排斥的光保护策略。