Suppr超能文献

皮质神经群体可以通过线性整合输入来指导行为,而与同步无关。

Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E178-87. doi: 10.1073/pnas.1318750111. Epub 2013 Dec 23.

Abstract

Neurons are sensitive to the relative timing of inputs, both because several inputs must coincide to reach spike threshold and because active dendritic mechanisms can amplify synchronous inputs. To determine if input synchrony can influence behavior, we trained mice to report activation of excitatory neurons in visual cortex using channelrhodopsin-2. We used light pulses that varied in duration from a few milliseconds to 100 ms and measured neuronal responses and animals' detection ability. We found detection performance was well predicted by the total amount of light delivered. Short pulses provided no behavioral advantage, even when they concentrated evoked spikes into an interval a few milliseconds long. Arranging pulses into trains of varying frequency from beta to gamma also produced no behavioral advantage. Light intensities required to drive behavior were low (at low intensities, channelrhodopsin-2 conductance varies linearly with intensity), and the accompanying changes in firing rate were small (over 100 ms, average change: 1.1 spikes per s). Firing rate changes varied linearly with pulse intensity and duration, and behavior was predicted by total spike count independent of temporal arrangement. Thus, animals' detection performance reflected the linear integration of total input over 100 ms. This behavioral linearity despite neurons' nonlinearities can be explained by a population code using noisy neurons. Ongoing background activity creates probabilistic spiking, allowing weak inputs to change spike probability linearly, with little amplification of coincident input. Summing across a population then yields a total spike count that weights inputs equally, regardless of their arrival time.

摘要

神经元对输入的相对时间敏感,这既是因为多个输入必须同时达到尖峰阈值,也是因为活跃的树突机制可以放大同步输入。为了确定输入同步是否会影响行为,我们使用通道视紫红质-2 训练老鼠报告视觉皮层中兴奋性神经元的激活。我们使用持续时间从几毫秒到 100 毫秒不等的光脉冲,并测量神经元的反应和动物的检测能力。我们发现,检测性能可以很好地用所传递的光的总量来预测。即使短脉冲将诱发的尖峰集中在几毫秒长的间隔内,也不能提供行为优势。将脉冲排列成从β到γ的不同频率的脉冲串也不能产生行为优势。驱动行为所需的光强很低(在低光强下,通道视紫红质-2 的电导随光强线性变化),并且伴随的放电率变化很小(超过 100 毫秒,平均变化:1.1 个/秒)。放电率变化与脉冲强度和持续时间呈线性关系,行为由总尖峰计数预测,而与时间排列无关。因此,动物的检测性能反映了在 100 毫秒内对总输入的线性积分。这种行为的线性,尽管神经元是非线性的,可以通过使用噪声神经元的群体代码来解释。持续的背景活动产生概率性的尖峰,允许弱输入以线性方式改变尖峰概率,而对同时输入的放大作用很小。因此,跨群体求和会产生一个总尖峰计数,该计数平等地加权输入,而不管它们的到达时间如何。

相似文献

引用本文的文献

1
Critical Scaling of Novelty in the Cortex.皮层中新颖性的临界标度
bioRxiv. 2025 Aug 28:2024.12.23.630084. doi: 10.1101/2024.12.23.630084.

本文引用的文献

3
Differences in sensitivity to neural timing among cortical areas.皮质区域对神经时间敏感性的差异。
J Neurosci. 2012 Oct 24;32(43):15142-7. doi: 10.1523/JNEUROSCI.1411-12.2012.
5
Conversion of sensory signals into perceptual decisions.感觉信号向知觉决策的转换。
Prog Neurobiol. 2013 Apr;103:41-75. doi: 10.1016/j.pneurobio.2012.03.007. Epub 2012 Mar 28.
8
Insights into cortical mechanisms of behavior from microstimulation experiments.从微刺激实验看大脑皮层的行为机制
Prog Neurobiol. 2013 Apr;103:115-30. doi: 10.1016/j.pneurobio.2012.01.006. Epub 2012 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验