Ribeiro Tiago L, Vakili Ali, Gifford Bridgette, Siddiqui Raiyyan, Sinfuego Vincent, Pajevic Sinisa, Plenz Dietmar
Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA.
bioRxiv. 2025 Aug 28:2024.12.23.630084. doi: 10.1101/2024.12.23.630084.
The ability to detect and transmit novel events is essential for adaptive behavior in uncertain environments. Here, we investigate how holographically triggered, unanticipated action potentials propagate through the primary visual cortex of resting mice, focusing on pyramidal neuron communication. We find that these novel spikes - uncorrelated with ongoing activity - exert a disproportionately large influence on neighboring neurons, whose response scales as a power law (exponent ~0.2-0.3). Even a few such spikes can recruit a large fraction of the local network, enabling robust decoding of perturbation origin despite high trial-by-trial variability and ongoing activity dominated by large activity fluctuations in the form of scale-invariant, parabolic neuronal avalanches. Simulations confirm this scaling to small, local perturbations aligns with the high susceptibility of complex systems near criticality. These results suggest that critical dynamics facilitate efficient transmission of novel signals, revealing a fundamental mechanism for cortical novelty detection.
在不确定环境中,检测和传递新事件的能力对于适应性行为至关重要。在此,我们研究全息触发的、意外的动作电位如何通过静息小鼠的初级视觉皮层传播,重点关注锥体神经元之间的通信。我们发现,这些与正在进行的活动不相关的新尖峰对相邻神经元产生了不成比例的巨大影响,其反应呈幂律缩放(指数约为0.2 - 0.3)。即使是少数这样的尖峰也能招募很大一部分局部网络,尽管每次试验的变异性很高,且正在进行的活动以尺度不变的抛物线型神经元雪崩形式的大活动波动为主导,但仍能对扰动源进行可靠解码。模拟结果证实,这种对小的局部扰动的缩放与临界状态附近复杂系统的高敏感性一致。这些结果表明,临界动力学促进了新信号的有效传递,揭示了皮层新奇性检测的一种基本机制。