Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France.
PLoS Genet. 2013;9(12):e1003956. doi: 10.1371/journal.pgen.1003956. Epub 2013 Dec 19.
Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability.
尽管通过分区 ATP 酶将 ATP 水解被认为是确保质粒稳定遗传的分离机制中的关键步骤,但本质上非常微弱。同源着丝粒结合蛋白(CBP)与 DNA 一起刺激 ATP 酶水解 ATP 并进行重新定位,从而引发质粒运动,显然证实了水解在分区中的必要性。然而,ATP 结合本身会改变 ATP 酶的构象和性质,使得难以严格区分 ATP 在体内的底物和辅因子作用。我们已经表明,F 质粒 CBP 中的精氨酸 R36 和 R42 的突变会降低 SopA 催化的 ATP 水解的刺激作用,而不会改变 SopA-SopB 亲和力,这表明可以使用 SopA 分析水解作用,因为 SopA 对 ATP 的构象响应正常。在这里,我们报告说,强烈降低 SopB 介导的 ATP 水解的刺激作用只会导致 mini-F 稍微不稳定,尽管不稳定性以及 mini-F 聚类的增加与 ATP 酶缺陷成正比。出乎意料的是,减少刺激作用也会增加 SopA 在核区上的重新定位频率。这种增加是由于 SopA 在核区末端停留的时间急剧缩短所致;迁移的平均速度本身没有变化。减少的 ATP 水解也与 mini-F 定位的明显偏差有关,尽管平均位置仅略有变化。因此,通过专门针对 SopB 刺激的 ATP 水解,我们的研究表明,即使在降低分裂簇效率和质粒定位恒定性的 ATP 酶水平下,SopB 仍然可以激活 SopA 的迁移性和质粒定位性,并维持接近野生型水平的质粒稳定性。