Tefera Tesfaye Wolde, Steyn Frederik J, Ngo Shyuan T, Borges Karin
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
Cell Biosci. 2021 Jan 11;11(1):14. doi: 10.1186/s13578-020-00511-2.
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selective degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregulation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impairments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investigations into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, and to also reveal new therapeutic strategies in ALS.
肌萎缩侧索硬化症(ALS)是一种致命的进行性神经退行性疾病,其主要特征是大脑中的上运动神经元以及脑干和脊髓中的下运动神经元发生选择性退化。神经元选择性死亡的确切机制尚不清楚。越来越多的证据表明,在动物模型和ALS患者中,细胞和全身水平的能量代谢存在异常。许多ALS患者表现出代谢变化,如代谢亢进和体重减轻。尽管在ALS患者中观察到了这些全身代谢变化,但代谢失调的根源仍有待充分阐明。一些临床前研究表明,细胞水平潜在的生物能量损伤可能导致ALS中的代谢功能障碍。特别是,中枢神经系统葡萄糖转运和代谢缺陷似乎导致线粒体能量生成减少和氧化应激增加,这似乎促进了ALS的疾病进展。在此,我们综述了目前关于ALS中枢神经系统葡萄糖代谢功能障碍的知识和理解,重点关注葡萄糖转运、糖酵解、磷酸戊糖途径、三羧酸循环和氧化磷酸化中的代谢损伤。我们还总结了糖原代谢和神经胶质代谢相互作用中发现的紊乱情况。最后,我们讨论了未来研究的方向,即如何改善代谢损伤以减缓ALS的疾病进展。这些研究对于理解代谢功能障碍和随后神经退行性变的潜在原因至关重要,同时也有助于揭示ALS的新治疗策略。
Cell Biosci. 2021-1-11
Neurochem Res. 2016-3
Acta Neuropathol. 2018-3-16
Curr Genet Med Rep. 2017-6
Mediators Inflamm. 2017-9-7
J Inflamm (Lond). 2025-8-27
Clin Neurophysiol Pract. 2025-7-11
J Neurochem. 2025-6
NeuroImmune Pharm Ther. 2024
Quant Imaging Med Surg. 2025-4-1
Pharmaceuticals (Basel). 2025-2-19
Expert Rev Neurother. 2020-9
J Neurol Neurosurg Psychiatry. 2020-8
J Neurol Neurosurg Psychiatry. 2020-8
Amyotroph Lateral Scler Frontotemporal Degener. 2020-11
Front Neurosci. 2019-12-6
Ann Neurol. 2020-1-6