Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
Beilstein J Nanotechnol. 2013 Nov 22;4:781-92. doi: 10.3762/bjnano.4.89. eCollection 2013.
We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments.
我们通过电子输运的蒙特卡罗模拟,对 SiO2 衬底上电子束诱导钨纳米结构生长过程中的能量和电荷分布进行了数值研究。这项研究深入了解了在电子束存在下,能量和电荷在衬底中和已经存在的金属纳米结构中的沉积情况。我们分析了不同组成和不同深度的沉积物中的电子轨迹、非弹性平均自由程和背散射电子的分布。我们发现,虽然在纳米结构生长的早期阶段,仍有相当一部分电子轨迹与衬底相互作用,但当纳米结构变厚时,输运几乎完全发生在纳米结构中。特别是,更大的沉积物密度会导致电子背散射增强。这项工作表明,介观辐射输运技术如何有助于建立一个模型,该模型解决了电子束诱导沉积(EBID)过程的多尺度性质。此外,类似的模拟可以帮助理解在生长后电子束处理过程中,背散射电子和发射二次电子在纳米结构材料结构性质变化中所起的作用。