Univ. Bordeaux, CENBG, UMR 5797, Gradignan, France.
CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France.
Med Phys. 2018 May;45(5):2230-2242. doi: 10.1002/mp.12827. Epub 2018 Mar 23.
Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy.
The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it.
The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation.
Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4.
众所周知,金纳米颗粒(GNPs)在基于光子的辐照后会增强其附近的吸收剂量。为了研究 GNPs 的治疗效果,以前的蒙特卡罗模拟研究已经探索了使用大多数量子历史模型的 GNP 剂量增强。然而,一般来说,这种模型适用于宏观体积和几百电子伏特以上的电子能量。我们最近为 Geant4 蒙特卡罗模拟工具包的 Geant4-DNA 扩展开发了用于金中电子输运的离散物理模型,其中包括完整原子退激发级联的描述。这些模型允许在 10 eV 以下对金中的电子轨迹进行逐事件模拟。本工作描述了在 X 射线放射治疗的背景下,这种专门的物理模型如何影响基于模拟的 GNP 放射性增强研究。
将新的离散物理模型与广泛用于基于 NP 放射性增强模拟研究的 Geant4 Penelope 和 Livermore 量子历史模型进行比较。已经开发了一个专门的 Geant4 模拟应用程序,用于计算在单能电子束辐照下,在 GNP 周围的液体水中的吸收剂量及其由 GNP 本身发射的次级粒子引起的放射性增强。当源自 GNP 并从 GNP 中逸出时,新物理模型对次级粒子谱的计算也进行了量化。
对于 100 keV 入射电子,新物理模型在大体积中与现有的 Geant4 Livermore 和 Penelope 模型显示出相似的反向散射系数。然而,在亚微米尺寸的体积中,只有离散模型才能描述在这些长度尺度下 GNP 周围仍应存在的高反向散射。在新模型和现有 Geant4 模型之间,吸收剂量和次级粒子的径向分布也存在显著差异(大多超过 2 倍)。这些差异是由于量子历史模型的固有局限性还是由于底层散射截面的差异造成的,还需要进一步研究。
为了通过蒙特卡罗模拟更好地模拟 GNPs 在放射治疗中的影响,需要改进金的物理模型。我们在 Geant4 中实现了用于金的离散电子输运模型,该模型可应用于低至 10 eV 的范围,包括全退激发级联的建模。结果表明,与 Geant4 的现有 Livermore 和 Penelope 量子历史模型相比,新模型对亚微米尺寸的金体积中的粒子输运模拟有显著的积极影响。