Suppr超能文献

从链霉菌属wedmorensis 中初步表征 Fom3:磷霉素生物合成中的甲基转移酶。

Initial characterization of Fom3 from Streptomyces wedmorensis: The methyltransferase in fosfomycin biosynthesis.

机构信息

School of Molecular Biosciences, Washington State University, P.O. Box 647520, Pullman, WA 99164, USA.

出版信息

Arch Biochem Biophys. 2014 Feb 1;543:67-73. doi: 10.1016/j.abb.2013.12.004. Epub 2013 Dec 24.

Abstract

Fosfomycin is a broad-spectrum antibiotic that is useful against multi-drug resistant bacteria. Although its biosynthesis was first studied over 40 years ago, characterization of the penultimate methyl transfer reaction has eluded investigators. The enzyme believed to catalyze this reaction, Fom3, has been identified as a radical S-adenosyl-L-methionine (SAM) superfamily member. Radical SAM enzymes use SAM and a four-iron, four-sulfur ([4Fe-4S]) cluster to catalyze complex chemical transformations. Fom3 also belongs to a family of radical SAM enzymes that contain a putative cobalamin-binding motif, suggesting that it uses cobalamin for methylation. Here we describe the first biochemical characterization of Fom3 from Streptomyces wedmorensis. Since recombinant Fom3 is insoluble, we developed a successful refolding and iron-sulfur cluster reconstitution procedure. Spectroscopic analyses demonstrate that Fom3 binds a [4Fe-4S] cluster which undergoes a transition between a +2 "resting" state and a +1 active state characteristic of radical SAM enzymes. Site-directed mutagenesis of the cysteine residues in the radical SAM CxxxCxxC motif indicates that each residue is essential for functional cluster formation. We also provide preliminary evidence that Fom3 adds a methyl group to 2-hydroxyethylphosphonate (2-HEP) to form 2-hydroxypropylphosphonate (2-HPP) in an apparently SAM-, sodium dithionite-, and methylcobalamin-dependent manner.

摘要

磷霉素是一种广谱抗生素,对多种耐药菌有效。尽管其生物合成早在 40 多年前就已被研究,但前倒数第二个甲基转移反应的特征一直困扰着研究人员。被认为催化该反应的酶 Fom3 已被鉴定为一种自由基 S-腺苷甲硫氨酸 (SAM) 超家族成员。自由基 SAM 酶使用 SAM 和一个四铁四硫 ([4Fe-4S]) 簇来催化复杂的化学转化。Fom3 还属于一类含有潜在钴胺素结合基序的自由基 SAM 酶,表明它使用钴胺素来进行甲基化。在这里,我们描述了来自链霉菌的 Fom3 的首次生化特征。由于重组 Fom3 不溶,我们开发了一种成功的重折叠和铁硫簇重建程序。光谱分析表明,Fom3 结合一个 [4Fe-4S] 簇,该簇经历从 +2“静止”状态到自由基 SAM 酶特征的 +1 活性状态的转变。对自由基 SAM CxxxCxxC 基序中的半胱氨酸残基进行定点突变表明,每个残基对于功能性簇形成都是必不可少的。我们还提供了初步证据表明,Fom3 以 SAM、连二亚硫酸钠和甲基钴胺素依赖性方式将甲基添加到 2-羟乙基膦酸 (2-HEP) 上,形成 2-羟丙基膦酸 (2-HPP)。

相似文献

1
Initial characterization of Fom3 from Streptomyces wedmorensis: The methyltransferase in fosfomycin biosynthesis.
Arch Biochem Biophys. 2014 Feb 1;543:67-73. doi: 10.1016/j.abb.2013.12.004. Epub 2013 Dec 24.
2
Stereospecific Radical-Mediated B-Dependent Methyl Transfer by the Fosfomycin Biosynthesis Enzyme Fom3.
Biochemistry. 2018 Aug 21;57(33):4967-4971. doi: 10.1021/acs.biochem.8b00616. Epub 2018 Jul 10.
7
Overall Retention of Methyl Stereochemistry during B-Dependent Radical SAM Methyl Transfer in Fosfomycin Biosynthesis.
Biochemistry. 2021 May 25;60(20):1587-1596. doi: 10.1021/acs.biochem.1c00113. Epub 2021 May 4.
8
Stereochemical Course of Methyl Transfer by Cobalamin-Dependent Radical SAM Methyltransferase in Fosfomycin Biosynthesis.
Biochemistry. 2018 Apr 10;57(14):2069-2073. doi: 10.1021/acs.biochem.8b00264. Epub 2018 Mar 26.
9
The mechanisms of radical SAM/cobalamin methylations: an evolving working hypothesis.
Chembiochem. 2013 Apr 15;14(6):675-7. doi: 10.1002/cbic.201200762. Epub 2013 Mar 25.
10
Radical-mediated enzymatic methylation: a tale of two SAMS.
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.

引用本文的文献

1
Changing Fates of the Substrate Radicals Generated in the Active Sites of the B-Dependent Radical SAM Enzymes OxsB and AlsB.
J Am Chem Soc. 2023 Feb 15;145(6):3656-3664. doi: 10.1021/jacs.2c12953. Epub 2023 Jan 31.
2
Convergent and divergent biosynthetic strategies towards phosphonic acid natural products.
Curr Opin Chem Biol. 2022 Dec;71:102214. doi: 10.1016/j.cbpa.2022.102214. Epub 2022 Oct 3.
3
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy.
mBio. 2022 Oct 26;13(5):e0112122. doi: 10.1128/mbio.01121-22. Epub 2022 Aug 22.
4
Cobalamin-Dependent Radical -Adenosylmethionine Enzymes: Capitalizing on Old Motifs for New Functions.
ACS Bio Med Chem Au. 2022 Jun 15;2(3):173-186. doi: 10.1021/acsbiomedchemau.1c00051. Epub 2022 Jan 27.
5
Studies of GenK and OxsB, two B-dependent radical SAM enzymes involved in natural product biosynthesis.
Methods Enzymol. 2022;669:71-90. doi: 10.1016/bs.mie.2021.12.014. Epub 2022 Feb 3.
6
The intriguing biology and chemistry of fosfomycin: the only marketed phosphonate antibiotic.
RSC Adv. 2019 Dec 19;9(72):42204-42218. doi: 10.1039/c9ra08299a. eCollection 2019 Dec 18.
7
Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes.
ACS Bio Med Chem Au. 2022 Feb 16;2(1):4-10. doi: 10.1021/acsbiomedchemau.1c00032. Epub 2021 Oct 13.

本文引用的文献

2
Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes.
Nat Chem Biol. 2012 Dec;8(12):957-9. doi: 10.1038/nchembio.1091. Epub 2012 Oct 14.
3
RlmN and AtsB as models for the overproduction and characterization of radical SAM proteins.
Methods Enzymol. 2012;516:125-52. doi: 10.1016/B978-0-12-394291-3.00030-7.
4
Radical-mediated enzymatic methylation: a tale of two SAMS.
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.
5
In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea.
Biochemistry. 2011 Oct 25;50(42):8986-8. doi: 10.1021/bi201220r. Epub 2011 Sep 28.
6
The antiviral protein viperin is a radical SAM enzyme.
FEBS Lett. 2010 Mar 19;584(6):1263-7. doi: 10.1016/j.febslet.2010.02.041. Epub 2010 Feb 20.
8
Susceptibility of urinary tract bacteria to fosfomycin.
Antimicrob Agents Chemother. 2009 Oct;53(10):4508-10. doi: 10.1128/AAC.00721-09. Epub 2009 Aug 17.
10
Biosynthesis of phosphonic and phosphinic acid natural products.
Annu Rev Biochem. 2009;78:65-94. doi: 10.1146/annurev.biochem.78.091707.100215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验