Serrat Maria A, Efaw Morgan L, Williams Rebecca M
Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia.
J Appl Physiol (1985). 2014 Feb 15;116(4):425-38. doi: 10.1152/japplphysiol.01212.2013. Epub 2013 Dec 26.
Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.
在理解纵向生长的分子调控方面取得的进展,已促成了针对生长板疾病的新型药物疗法的开发。尽管取得了进展,但一个主要的未满足挑战是将治疗剂输送到无血管的软骨板。致密的细胞外基质和缺乏穿透性血管形成了一个半透性的“屏障”,阻碍了血管 - 软骨界面处的分子运输。为了克服这一障碍,我们使用后肢加热模型来操纵5周龄雌性小鼠(n = 22)的骨循环。温度代表了正常人类膝关节的生理范围。我们使用体内多光子显微镜来量化大分子向胫骨生长板的温度增强递送。我们测试了这样一个假设,即后肢温度从22°C升高到34°C会增加大的全身分子的血管通路,使用近似生理调节因子大小的10、40和70 kDa葡聚糖进行模拟。通过血管直径、速度以及从软骨膜下丛状血管渗漏的葡聚糖和在生长板软骨中的积累来量化血管通路。在34°C时,10 kDa葡聚糖进入生长板的量增加了>150%。40和70 kDa葡聚糖的进入量增加<50%,表明存在大小依赖性的温度增强。在34°C时,丛状血管中的总葡聚糖水平增加,但血管外的相对渗漏与温度无关。在34°C时,血流速度和血管直径分别增加了118%和31%。这些结果表明,热增强了生长板周围大分子的血管运载能力和生物利用度,表明温度可能是一种无创策略,用于调节向儿童受损生长板递送治疗药物。